Automatically upgrade your video content to a new and improved codec

Easy & Safe Codec Modernization with Beamr using Nvidia GPUs 

Following a decade where AVC/H.264 was the clear ruler of the video encoding world, the last years have seen many video coding options battling to conquer the video arena. For some insights on the race between modern coding standards you can check out our corresponding blog post.

Today we want to share how easy it can be to upgrade your content to a new and improved codec in a fast, fully automatic process which guarantees the visual quality of the content will not be harmed. This makes the switchover to newer encoders a smooth, easy and low cost process which can help accelerate the adoption of new standards such as HEVC and AV1. When this transformation is done using a combination of Beamr’s technology with the Nvidia NVENC encoder, using their recently released APIs, it becomes a particularly cutting-edge solution, enjoying the benefits of the leading solution in hardware AV1 encoding.

The benefit of switching to more modern codecs lies of course in the higher compression efficiency that they offer. While the extent of improvement is very dependent on the actual content, bitrates and encoders used, HEVC is considered to offer gains of 30%-50% over AVC, meaning that for the same quality you can spend up to 50% fewer bits. For AV1 this increase is generally a bit higher.. As more and more on-device support is added for these newer codecs, the advantage of utilizing them to reduce both storage and bandwidth is clear. 

Generally speaking, performing such codec modernization involves some non-trivial steps. 

First, you need to get access to the modern encoder you want to use, and know enough about it in order to configure the encoder correctly for your needs. Then you can proceed to encoding using one of the following approaches.

The first approach is to perform bit-rate driven encoding. One possibility is to use conservative bitrates, in which case the potential reduction in size will not be achieved. Another possibility is to set target bitrates that reflect the expected savings, in which case there is a risk of losing quality. For example, In an experimental test of files which were converted from their AVC source to HEVC, we found that on average, a bitrate reduction of 50% could be obtained when using the Beamr CABR codec modernization approach. However, when the same files were all brute-force encoded  to HEVC at 50% reduced bitrate, using the same encoder and configuration, the quality took a hit for some of the files.

 

This example shows the full AVC source frame on top, with the transcodes to HEVC below it. Note the distortion in the blind HEVC encode, shown on the left, compared to the true-to-source video transformed with CABR on the right.

The second approach is to perform the transcode using a quality driven encode, for instance using the constant QP (Quantization Parameter) or CRF (Constant Rate Factor) encoding modes with conservative values, which will in all likelihood preserve the quality. However, in this case you are likely to unnecessarily “blow up” some of your files to much higher bitrates. For example, for the UGC content shown below, transcoding to HEVC using a software encoder and CRF set to 21 almost doubled the file size.

Yet another approach is to use a trial and error encode process for each file or even each scene, manually verifying that a good target encoding setup was selected which minimizes the bitrate while preserving the quality. This is of course an expensive and cumbersome process, and entirely unscalable.

By using Beamr CABR this is all done for you under the hood, in a fully automatic process, which makes optimized choices for each and every frame in your video, selecting the lowest bitrate that will still perfectly preserve the source visual quality. When performed using the Nvidia NVENC SDK with interfaces to Beamr’s CABR technology, this transformation is significantly accelerated and becomes even more cost effective. 

The codec modernization flow is demonstrated for AVC to HEVC conversion in the above high-level block diagram. As shown here, the CABR controller interacts with NVENC, Nvidia’s hardware video encoder, using the new APIs Nvidia has created for this purpose. At the heart of the CABR controller lies Beamr’s Quality Measure, BQM, a unique, patented, Emmy award winning perceptual video quality measure. BQM has now been adapted and ported to the Nvidia GPU platform, resulting in significant acceleration of the optimization process .  

The Beamr optimization technology can be used not only for codec modernization, but also to reduce bitrate of an input video, or of a target encode, while guaranteeing the perceptual quality is preserved, thus creating encodes with the same perceptual quality at lower bitrates or file sizes. In any and every usage of the Beamr CABR solution, size or bitrate are reduced as much as possible while each frame of the optimized encode is guaranteed to be perceptually identical to the reference. The codec modernization use case is particularly exciting as it puts the ability to migrate to more efficient and sophisticated codecs, previously used primarily by video experts, into the hands of any user with video content.

For more information please contact us at info@beamr.com 

How to deal with the tension on the mobile network – part 2 (VIDEO Interview)

In late July, I reported on the “news” that Verizon was throttling video traffic for some users. As usual, the facts around this seemingly punitive act were not fully understood, which triggered this blog post.

At IBC last month (September 2017), I was interviewed by RapidTV where much of the conversation was around the Apple news of their support for HEVC across the device ecosystem running iOS 11 and High Sierra. As I was reviewing this interview, it seemed natural to publish it as a follow up to the original post.

There is no doubt that mobile operators are under pressure as a result of the network crushing video traffic they are being forced to deliver. But the good news is that for those operators who adopt HEVC, they are going to enjoy significant bitrate efficiencies, possibly as high as 50%. And for many services, though they will chose to take some savings, this means they’ll be able to upgrade their resolutions to full 1080p while simultaneously improving the video quality they are delivering.

I hope you find this video insightful. Our team has a very simple evaluation offer to discuss with all qualified video services and video distributors. Just send an email to sales@beamr.com and we’ll get in touch with the details.

2016 Paves the Way for a Next-Gen Video Encoding Technology Explosion in 2017

2016 has been a significant year for video compression as 4K, HDR, VR and 360 video picked up steam, paving the road for an EXPLOSION of HEVC adoption in 2017. With HEVC’s ability to reduce bitrate and file sizes up to 50% over H.264, it is no surprise that HEVC has transitioned to be the essential enabler of high-quality and reliable streaming video powering all the new and exciting entertainment experiences being launched.

Couple this with the latest announcement from HEVC Advance removing royalty uncertainties that plagued the market in 2016 and we have a perfect marriage of technology and capability with HEVC.

In this post we’ll discuss 2016 from the lenses of Beamr’s own product and company news, combined with notable trends that will shape 2017 in the advanced video encoding space.  

>> The Market Speaks: Setting the Groundwork for an Explosion of HEVC

The State of 4K

With 4K content creation growing and the average selling price of UHD 4K TVs dropping (and being adopted faster than HDTVs), 4K is here and the critical mass of demand will follow closely. We recently did a little investigative research on the state of 4K and four of the most significant trends pushing its adoption by consumers:

  • The upgrade in picture quality is significant and will drive an increase in value to the consumer – and, most importantly, additional revenue opportunities for services as consumers are preconditioned to pay more for a premium experience. It only takes a few minutes viewing time to see that 4K offers premium video quality and enhances the entertainment experience.
  • Competitive forces are operating at scale – Service Providers and OTT distributors will drive the adoption of 4K. MSO are upping their game and in 2017 you will see several deliver highly formidable services to take on pure play OTT distributors. Who’s going to win, who’s going to lose? We think it’s going to be a win-win as services are able to increase ARPUs and reduce churn, while consumers will be able to actually experience the full quality and resolution that their new TV can deliver.
  • Commercially available 4K UHD services will be scaling rapidly –  SNL Kagan forecasts the number of global UHD Linear channels at 237 globally by 2020, which is great news for consumers. The UltraHD Forum recently published a list of UHD services that are “live” today numbering 18 VOD and 37 Live services with 8 in the US and 47 outside the US. Clearly, content will not be the weak link in UHD 4K market acceptance for much longer.
  • Geographic deployments — 4K is more widely deployed in Asia Pacific and Western Europe than in the U.S. today. But we see this as a massive opportunity since many people are traveling abroad and thus will be exposed to the incredible quality. They will then return home to question their service provider, why they had to travel outside the country to see 4K. Which means as soon as the planned services in the U.S. are launched, they will likely attract customer more quickly than we’ve seen in the past.

HDR adds WOW factor to 4K

High Dynamic Range (HDR) improves video quality by going beyond more pixels to increase the amount of data delivered by each pixel. HDR video is capable of capturing a larger range of brightness and luminosity to produce an image closer to what can be seen in real life. Show anyone HDR content encoded in 4K resolution, and it’s no surprise that content providers and TV manufacturers are quickly jumping on board to deliver content with HDR. Yes, it’s “that good.” There is no disputing that HDR delivers the “wow” factor that the market and consumers are looking for. But what’s even more promising is the industry’s overwhelmingly positive reaction to it. Read more here.

Beamr has been working with Dolby to enable Dolby Vision HDR support for several years now, even jointly presenting a white paper at SMPTE in 2014. The V.265 codec is optimized for Dolby Vision and HDR10 and takes into account all requirements for both standards including full support for VUI signaling, SEI messaging, SMPTE ST 2084:2014 and ITU-R BT.2020. For more information visit http://beamr.com/vanguard-by-beamr-content-adaptive-hevc-codec-sdk

Beamr is honored to have customers who are best in class and span OTT delivery, Broadcast, Service Providers and other entertainment video applications. From what we see and hear, studios are uber excited about HDR, cable companies are prepping for HDR delivery, Satellite distributors are building the capability to distribute HDR, and of course OTT services like Netflix, FandangoNow (formerly M-GO), VUDU, and Amazon are already distributing content using either Dolby Vision or HDR10 (or both). If your current video encoding workflow cannot fully support or adequately encode content with HDR, it’s time to update. Our V.265 video encoder SDK is a perfect place to start.

VR & 360 Video at Streamable Bitrates

360-degree video made a lot of noise in 2016.  YouTube, Facebook and Twitter added support for 360-degree videos, including live streaming in 360 degrees, to their platforms. 360-degree video content and computer-generated VR content is being delivered to web browsers, mobile devices, and a range of Virtual Reality headsets.  The Oculus Rift, HTC Vive, Gear VR and Daydream View have all shipped this year, creating a new market for immersive content experiences.

But, there is an inherent problem with delivering VR and 360 video on today’s platforms.  In order to enable HD video viewing in your “viewport” (the part of the 360-degree space that you actually look at), the resolution of the full 360 video delivered to you should be 4K or more.  On the other hand, the devices on the market today which are used to view this content, including desktops, mobile devices and VR headsets only support H.264 video decoding. So delivering the high-resolution video content requires very high bitrates – twice as much as using the more modern HEVC standard.

The current solution to this issue is lowered video quality in order to fit the H.264 video stream into a reasonable bandwidth. This creates an experience for users which is not the best possible, a factor that can discourage them from consuming this newly-available VR and 360 video content.  But there’s one thing we know for sure – next generation compression including HEVC and content adaptive encoding – and perceptual optimization – will be a critical part of the final solution. Read more about VR and 360 here.

Patent Pool HEVC Advance Announces “Royalty Free” HEVC software

As 4K, HDR, VR and 360 video gathers steam, Beamr has seen the adoption rate moving faster than expected, but with the unanswered questions around royalties, and concerns of who would shoulder the cost burden, distributors have been tentative. The latest move by HEVC Advance to offer a royalty free option is meant to encourage and accelerate the adoption (implementation) of HEVC, by removing royalty uncertainties.

Internet streaming distributors and software application providers can be at ease knowing they can offer applications with HEVC software decoders without incurring onerous royalties or licensing fees. This is important as streaming app content consumption continues to increase, with more and more companies investing in its future.

By initiating a software-only royalty solution, HEVC Advance expects this move to push the rest of the market i.e. device manufacturers and browser providers to implement HEVC capability in their hardware and offer their customers the best and most efficient video experience possible.

 

>> 2017 Predictions

Mobile Video Services will Drive the Need for Content-adaptive Optimization

Given the trend toward better quality and higher resolution (4K), it’s more important than ever for video content distributors to pursue more efficient methods of encoding their video so they can adapt to the rapidly changing market, and this is where content-adaptive optimization provides a massive benefit.

The boundaries between OTT services and traditional MSO (cable and satellite) are being blurred now that all major MSOs include TVE (TV Everywhere streaming services with both VOD and Linear channels) in their subscription packages (some even break these services out separately as is the case with SlingTV). And in October, AT&T CEO Randall Stephenson vowed that DirecTV Now would disrupt the pay-TV business with revolutionary pricing for an  Internet-streaming service at a mere $35 per month for a package with more than 100 channels.

And get this – AT&T wireless is adopting the practice of “zero rating” for their customers, that is, they will not count the OTT service streaming video usage toward the subscriber’s monthly data plan. This represents a great value for customers, but there is no doubt that it puts pricing pressure on the operational side of all zero rated services.

2017 is the year that consumers will finally be able to enjoy linear as well as VOD content anywhere they wish even outside the home.

Beamr’s Contribution to MSOs, Service Providers, and OTT Distributors is More Critical Than Ever

When reaching to consumers across multiple platforms, with different constraints and delivery cost models, Beamr’s content adaptive optimizer perfects the encoding process to the most efficient quality and bitrate combination.

Whether you pay by the bit delivered to a traditional CDN provider, or operate your own infrastructure, the benefits of delivering less traffic are realized with improved UX such as faster stream start times and reduced re-buffering events, in addition to the cost savings. One popular streaming service reported to us that after implementing our content-adaptive optimization solution their rebuffering events as measured on the player were reduced by up to 50%, while their stream start times improved 20%.

Recently popularized by Netflix and Google, content-adaptive encoding is the idea that not all videos are created equal in terms of their encoding requirements. Content-adaptive optimization complements the encoding process by driving the encoder to the lowest bitrate possible based on the needs of the content, and not a fixed target bitrate (as seen in traditional encoding processes and products).

A content-adaptive solution can optimize more efficiently by analyzing already-encoded video on a frame-by-frame and scene-by-scene level, detecting areas of the video that can be further compressed without losing perceptual quality (e.g. slow motion scenes, smooth surfaces).

Provided the perceptual quality calculation is performed at the frame level with an optimizer that contains a closed loop perceptual quality measure, the output can be guaranteed to be the highest quality at the lowest bitrate possible. Click the following link to learn how Beamr’s patented content adaptive optimization technology achieves exactly this result.

Encoding and Optimization Working Together to Build the Future

Since the content-adaptive optimization process is applied to files that have already been encoded, by combining an industry leading H.264 and HEVC encoder with the best optimization solution (Beamr Video), the market will be sure to benefit by receiving the highest quality video at the lowest possible bitrate and file size. As a result, this will allow content providers to improve the end-user experience with high quality video, while meeting the growing network constraints due to increased mobile consumption and general Internet congestion.

Beamr made a bold step towards delivering on this stated market requirement by disrupting the video encoding space when in April 2016 we acquired Vanguard Video – a premier video encoding and technology company. This move will benefit the industry starting in 2017 when we introduce a new class of video encoder that we call a Content Adaptive Encoder.

As content adaptive encoding techniques are being adopted by major streaming services and video platforms like YouTube and Netflix, the market is gearing up for more advanced rate control and optimization methods, something that fits our perceptual quality measure technology perfectly. This fact when combined with Beamr having the best in class HEVC software encoder in the industry, will yield exciting benefits for the market. Read the Beamr Encoder Superguide that details the most popular methods for performing content adaptive encoding and how you can integrate them into your video workflow.

One Year from Now…

In one year from now when you read our post summarizing 2017 and heralding 2018, what you will likely hear is that 2017 was the year that advanced codecs like HEVC combined with efficient perceptually based quality measures, such as Beamr’s, provide an additional 20% or greater bitrate reduction.

The ripple effect of this technology leap will be that services struggling to compete today on quality or bitrate, may fall so far behind that they lose their ability to grow the market. We know of many multi-service operator platforms who are gearing up to increase the quality of their video beyond the current best of class for OTT services. That is correct, they’ve watched the consumer response to new entrants in the market offering superior video quality, and they are not sitting still. In fact, many are planning to leapfrog the competition with their aggressive adoption of content adaptive perceptual quality driven solutions.  

If any one service assumes they have the leadership position based on bitrate or quality, 2017 may prove to be a reshuffling of the deck.

For Beamr, the industry can expect to see an expansion of our software encoder line with the integration of our perceptual quality measure which has been developed over the last 7 years, and is covered by more than 50 patents granted and pending. We are proud of the fact that this solution has been shipping for more than 3 years in our stand-alone video and photo optimizer solutions.

It’s going to be an exciting year for Beamr and the industry and we welcome you to join us. If you are intrigued and would like to learn more about our products or are interested in evaluating any of our solutions, check us out at beamr.com.

The State of Commercially Available 4K UHD Services

In a recent article we did a little investigative research on the state of 4K and four significant trends:

  1. The upgrade in picture quality is significant and will drive an increase in value to the consumer – and additional revenues for services.
  2. Competitive forces are operating at scale – Service Providers and OTT distributors will drive the adoption of 4K.
  3. SNL Kagen forecasts the number of global UHD Linear channels at 95 by the end of 2016 – and 237 globally by 2020.
  4. Geography. 4K is already far more widely deployed in Asia Pacific and Western Europe than in the U.S.

In this article we want to further highlight the state of commercially available 4K UHD services. The UltraHD Forum published a list of UHD services that are “live” and it’s worth checking out.

To break it down, there are 18 VOD and 37 Live services with 8 in the US and 47 outside the US.

The 4K adoption rate isn’t moving as slowly as one might think, so don’t make the mistake of misreading its speed. It’s time to start building your 4K workflows now as the competitive pressure is fast approaching.

Note: The following UHD service chart is courtesy UltraHD Forum.

Operator Country Service Topology Delivery Model Notes
AcTVila Japan VoD OTT Unicast ABR
airtel 4K India Live IPTV broadcast
Amazon US VoD OTT Unicast ABR
Bein Middle East Live DTH Broadcast
BT UK Live IPTV broadcast
Comcast US Push VoD Cable DOCSIS 3.x NBC used HDR10 & Atmos for Rio Olympics
Dalian Tiantu China TS Playout Cable unverified
DirecTV US VoD DTH Push VoD
Dish UHD promo Live IPTV broadcast
Fashion one (SES) Luxembourg Live DTH broadcast
Festival4K France Live IPTV broadcast
Fransat France Live DTH broadcast
Fransat France TS Playout DTH broadcast
Free France Live IPTV Multicast Android middleware, 1 channel at launch: Fashion TV loop
Globo TV Brazil VoD OTT Unicast ABR
High 4K TV Live IPTV broadcast
insight Live IPTV broadcast
Inspur China Live Cable unverified
J:COM Japan Live Cable Broadcast
KPN Netherlands Live IPTV Multicast
KT Korea Live IPTV Multicast
LG Uplus Korea VoD / Live ? IPTV Multicast
M-Go US VoD OTT Unicast ABR
Nasa TV US/Europe Live IPTV broadcast
Netflix US VoD OTT Unicast ABR
NOS Portugal Live Cable Broadcast, Multicast, Unicast ABR OTT trials have occured
NTT Plala Japan Live / VoD IPTV Multicast
Orange France France Live IPTV Multicast Dolby Atmos available on some broadcasts
pearl tv Luxembourg Live DTH broadcast
SFR France Live IPTV Multicast UHD used to promote Fiber
SKBB Korea Live IPTV Multicast
Sky Deutschland Germany Live / Push-VoD DTH / Cable broadcast Launched October 5th 2016, 2 Live channels + Push VoD
Sky Italia Italy Live DTH broadcast “Super HD” launched June 2016, HDR Announced for 2017
Sky UK UK Live DTH broadcast Available to premium Sky Q customers
SkyLife Korea Live DTH broadcast
SkyPerfecTV Japan Live DTH / Opticast broadcast HDR announced for October 2016
Slovak Telecom Slovakia VoD OTT Unicast ABR
Sony US VoD OTT Unicast ABR
Sth Korea’s Pandora Korea VoD OTT Unicast ABR
Stofa Dennmark Live cable Multicast Viasat Ultra HD
Swisscom Switzerland Live & VoD IPTV Multicast Testing HDR
Tata Sky India Live DTH broadcast cricket world cup’15
Telekom Malaysia Malaysia Live IPTV Multicast Demonstration/Trials – Launch soon
Telus Canada VoD OTT Unicast ABR Starts with VoD – Live coming soon
Tivusat Italy Live DTH Broadcast
Tricolor Russia TS Playout DTH broadcast
Turkcell Turkey Live IPTV Multicast
UHD-1 Live IPTV broadcast
UMAX Korea TS Playout Cable broadcast
Videocon India Live DTH broadcast cricket world cup’15
Vidity US VoD OTT Unicast ABR
Vodafone Portugal Portugal Live IPTV Multicast
Vodafone Spain Spain Live / VoD IPTV Multicast, Unicast
VUDU US VoD OTT Unicast ABR Dolby Vision and Atmos support announced
waiku tv France VoD OTT Unicast ABR

4 Facts about 4K

We recently did a little investigative research on the state of 4k and here are four highlights of what we found.

To start, as an industry, we’ve been anticipating 4K for a few years now, but it was just this past April that DIRECTV launched the first-ever Live 4K broadcast from the Masters Golf Tournament. Read more here:

http://ktla.com/2016/03/30/get-ready-for-4k-programming-with-directv/

In May Comcast EVP Matt Strauss spoke with Multichannel News about the company’s plans to begin distributing a 4K HDR capable Xi6 set-top box, but not until 2017.

http://www.multichannel.com/news/content/building-video-momentum/405085

And Comcast did broadcast the Olympics in 4K, but only to the Xfinity App built in to a select set of Smart TVs. Also, as with DIRECTV and DISH Network, the 4K signals were broadcast after a 24-hour delay which I understand was caused mostly by content prep requirements. 

Meanwhile for VOD, Netflix and Amazon are in the game producing and delivering 4K content. While VUDU and FandangoNow also have a limited set of licensed content available for streaming delivery.

Watch Dave Ronca discuss Netflix 4K workflow and technology architecture at Streaming Media East.

As for linear 4K UHD options, in the U.S. today there are just a few TV channels available with the only major operator offering a 24×7 4K UHD linear TV channel being DIRECTV. (There is also a small operator in Chattanooga Tennessee with five 4K UHD channels)

Given the seeming “lack of content” and esoteric discussions about 4K not being easy to “actually see” because most screen sizes are too small due to the extended viewing distance in most homes, you’d be excused for thinking that 4K is still a ways out.

But… our research took us to Best Buy, where the store is filled wall to wall with 4K UHD capable TVs.

Our conclusion?

Forget everything you’ve read: The upgrade in picture quality is real and it’s awesome.

And that brings us to the first key fact about 4K UHD:

  1. The upgrade in picture quality is significant – and it will drive an increase in value to the consumer – and drive additional revenues in return.

SNL Kagan data released in July 2016 the following data. Nearly 2 out of 3 service providers and content producers they surveyed reported they believe consumers are willing to pay more for 4k UHD content. (4K Global Industry Forecast, SNL Kagan, July 2016)

However, it’s important to note that this stunning picture quality isn’t simply resolution. In fact, as we’ll point out in an upcoming white paper, High Dynamic Range is probably as important a feature in today’s 4K UHD TVs as resolution.

HDR enables three key things. Most essentially, HDR improves camera hardware by capturing the high contrast ratios – lighter lights and darker darks – that exist in the real world. As such, HDR images provide more ‘realism’ – and to stunning effect. Also, HDR provides greater luminance (brighter) and thirdly, it offers a wider color gamut (redder reds and greener greens.)

If that consumer benefit can translate into revenue impact, and we believe it will, this will drive accelerated service provider adoption, particularly given our 2nd fact finding about 4k:

  1. Competitive forces operating at scale – amongst Service Providers and OTT providers will drive the adoption of 4K.

Once 4K rollouts start, many in the business feel it will move lightning fast compared to the HD rollout. Why? Consolidation has created more scale in the TV market.

Plus you need to add competitive pressure to the mix with digital leaders like Netflix setting a high video quality bar for not only OTT competitors but MVPDs.

Meantime, major video service providers have been aggressive in efforts to dominate and extend their footprint into consumer homes. Fear and competition will drive decision making and actions at MVPDs as much as consumer delight.

All of the growth pressure described in #2 manifests itself in the growing forecasts for UHD linear TV channel launches.

  1. SNL Kagan forecasts the number of global UHD Linear channels at 95 by the end of 2016 – and 237 globally by 2020.

Of course, this is a chicken-and-egg problem. Few consumers want to purchase 4K TVs if there isn’t enough content to be displayed on them.

But as Tim Bajarin of Creative Strategies points out, until 35-40% of homes have a 4K TV, the cable and broadcast networks won’t justify sizable numbers of 4K channel launches. [USA TODAY Jan 2 2016, “More 4K TV programming finally here in 2016”]

Which leads us to our 4th key fact about 4k UHD TV.

  1. Don’t forget about Geography. 4K is already far more widely deployed in Asia Pacific and Western Europe than in the U.S.

It’s clear that 4K UHD is in the earliest stages of a commercial rollout. Yet it is surprising to see how far behind the U.S. is in 4K UHD channel launches, at least according to the SNL Kagan report previously referenced.

In that report, the North American region had just 12% of linear 4K UHD channels globally, compared with 42% in Asia Pacific, and 30% in Western Europe.

But as you think about the state of 4K and your company’s investment level whether that be in acquiring content rights, licensing HEVC encoders, or upgrading your network and streaming technologies to accommodate the increased bandwidth demands, don’t make the mistake of misreading the speed of adoption. Start acquiring content and building your 4K workflows now, because when the competitive pressure arrives to have a full UHD 4K offer (and it will come) you do not want to be scrambling.

Can we profitably surf the Video Zettabyte Tsunami?

Two key ingredients are in place. But we need to get started now.

In a previous post, we warned about the Zettabyte video tsunami – and the accompanying flood of challenges and opportunities for video publishers of all stripes, old and new. 

Real-life tsunamis are devastating. But California’s all about big wave surfing, so we’ve been asking this question: Can we surf this tsunami?

The ability to do so is going to hinge on economics. So a better phrasing is perhaps: Can we profitably surf this video tsunami?

Two surprising facts came to light recently that point to an optimistic answer, and so we felt it was essential to highlight them.

1. The first fact is about the Upfronts – and it provides evidence that 4K UHD content can drive growth in top-line sales for media companies.

The results from the Upfronts – the annual marketplace where networks sell ad inventory to premium brand marketers – provided TV industry watchers a major upside surprise. This year, the networks sold a greater share of ad inventory at their upfront events, and at higher prices too. As Brian Steinberg put it in his July 27, 2016 Variety1 article:

“The nation’s five big English-language broadcast networks secured between $8.41 billion and $9.25 billion in advance ad commitments for primetime as part of the annual “upfront” market, according to Variety estimates. It’s the first time in three years they’ve managed to break the $9 billion mark. The upfront finish is a clear signal that Madison Avenue is putting more faith in TV even as digital-video options abound.”

Our conclusion? Beautiful, immersive content environments with a more limited number of high-quality ads can fuel new growth in TV. And 4K UHD, including the stunning impact of HDR, is where some of this additional value will surely come from.

Conventional wisdom is that today’s consumers are increasingly embracing ad-free SVOD OTT content from premium catalogs like Netflix, even when they have to pay for it. Since they are also taking the lead on 4K UHD content programming, that’s a great sign that higher value 4K UHD content will drive strong economics. But the data from the Upfronts also seems to suggest that premium ad-based TV content can be successful as well, especially when the Networks create immersive, clutter-free environments with beautiful pictures. 

Indeed, if the Olympics are any measure, Madison Avenue has received the message and turned up their game on the creative. I saw more than a few head-turning :30-second spots. Have you seen the Chobani ads in pristine HD? They’re as powerful as it gets.2

Check out this link to see the ads.

2. The second fact is about the operational side of the equation.

Can we deliver great content at a reasonable cost to a large enough number of homes?  On that front, we have more good news. 

The Internet in the United States is getting much faster. This, along with advanced methods of compression including HEVC, Content Adaptive Encoding and Perceptual Quality Metrics, will result in a ‘virtual upgrade’ of existing delivery network infrastructure. In particular, Ookla’s Speedtest.net published data on August 3, 2016 contained several stunning nuggets of information. But before we reveal the data, we need to provide a bit of context.

It’s important to note that 4K UHD content requires bandwidth of 15 Mbps or greater. Let’s be clear, this assumes Content Adaptive Encoding, Perceptual Quality Metrics, and HEVC compression are all used in combination. However, in Akamai’s State of the Internet report released in Q1 of this year, only 35% of the US population could access broadband speeds of 15 Mbps.

(Note: We have seen suggestions that 4K UHD content requires up to 25 Mbps. Compression technologies improve over time and those data points may well be old news. Beamr is on the cutting edge of compression and we firmly believe that 10 – 15 Mbps is the bandwidth needed – today – to achieve stunning 4K UHD audio visual quality.)

And that’s what makes Ookla’s data so important. Ookla found that in the first 6 months of 2016, fixed broadband customers saw a 42% year-over-year increase in average download speeds to a whopping 54.97 Mbps. Even more importantly, while 10% of Americans lack basic access to FCC target speeds of 25 Mbps, only 4% of urban Americans lack access to those speeds. This speed boost seems to be a direct result of industry consolidation, network upgrades, and growth in fiber optic deployments.

After seeing this news, we also decided to take a closer look at that Akamai data. And guess what we found? A steep slope upward from prior quarters (see chart below).

To put it back into surfing terms: Surf’s Up!
time-based-trends-in-internet-connection-speeds-and-adoption-rates

References:

(1) “How TV Tuned in More Upfront Ad Dollars: Soap, Toothpaste and Pushy Tactics” Brian Steinberg, July 27, 2016: http://variety.com/2016/tv/news/2016-tv-upftont-networks-advertising-increases-1201824887/ 

(2)  Chobani ad examples from their YouTube profile: https://www.youtube.com/watch?v=DD5CUPtFqxE&list=PLqmZKErBXL-Nk4IxQmpgpL2z27cFzHoHu

The TV of Tomorrow Needs Standards Today: Why the streaming video industry must work together to solve video delivery quality issues

Nearly 50 percent of Americans have an entertainment subscription service like Netflix, Amazon Prime, or Hulu, accessed via a connected television or devices like Amazon Fire TV, Roku, or Apple TV, according to recent research from Nielsen. Furthermore, a quarter of those in the coveted 18-to-34 demographic have either cut their cable or satellite services or never signed up for a pay-TV package, according to ComScore.

It’s Not Just Millennials Cutting the Cord – Content Providers Are Too

For decades cable and satellite services provided the exclusive gateway to mass audiences for premium and niche content channels.  Today, with the ease and availability to go consumer-direct via the Internet and over-the-top streaming (OTT), new networks are joining video platforms and licensing content to transactional, and subscription video-on-demand services, at an unprecedented rate.  The future of streamed TV whenever and wherever the viewer desires, is becoming a reality.  Or is already the reality for an ever-growing percentage of US households.

Yet to reach the consumer where they are means today’s content publisher must support a wide array of devices and players to enable video viewing ‘anytime and anywhere’ across computers, televisions, and mobile devices.  But device capabilities can vary significantly, and any modification means the content publisher must build different applications to support each device, and to ensure the best possible user experience.

Solving these issues will require collaboration among many players, who each have a vested interest in building the digital (streaming) OTT industry, in a quest to meet and exceed the “broadcast quality” standard that viewers have come to expect.

As streaming or OTT moves from a novelty to dominate distribution method, viewers are demanding better quality.  Leading streaming experience measurement company, Conviva, consistently reports in their user experience consumer survey results, that re-buffering events and video quality are the most cited frustrations for consumers watching online video.  With the adoption of new technologies such as 4K, virtual reality and OTT delivery of broadcast events, the demands on bandwidth will notably increase. Which explains why M-GO, a leading video on demand premium movie service partnered with Samsung and recently acquired by Fandango, reported that when they reduced bitrates using perceptual content adaptive technology, they experienced improvements in their streaming user experience and consumer satisfaction.

The key role that video quality plays in impacting user engagement and UX – and consequently service provider revenues, has incited recent efforts to improve video quality. This includes progress on adaptive bitrate selection, better transport-layer algorithms, and CDN optimization. Think about it – a single IP video packet contains approximately 1,400 bytes of information, and each IP packet contains multiple MPEG encapsulated video packets. The loss of even one IP packet can lead to video impairments lasting a half second or more.

The Need for Standardization Before Reaching the End User

While efforts are valuable and demonstrate potential improvements, one of the key missing pieces is an understanding of the structure that handcuffs video quality. That starts at the client-side before reaching the client. Standardization of online video quality, particularly the quality of experience (QoE), is more important than ever. But traditional methods of measuring quality do not translate well to OTT video.

Pay TV operators such as cable companies, have a specific advantage when it comes to the quality they can deliver, and that is, they control every aspect of the delivery process including the network and playback device, known as the STB or set-top-box. In contrast, the OTT delivery structure is fragmented, dangling by multiple vendors – from delivery, storage, transcoding – all who are responsible for parts of the overall system. Viewers care little about the complex network or routes involved to get their content to a device.  They simply expect the same high-quality viewer experience that they are accustomed to with traditional pay TV or broadcast systems.

This fragmentation, coupled with numerous formats that must be supported across devices, the need for standardization and the related challenges are apparent. While we rely on monitoring and analysis, there is enough variation in the measurement methodologies and definitions across the industry to impede our ability to not only maintain – but improve video quality. More than one video engineer would likely admit privately, that they spend their day just making sure the video is working, and only after this task is accomplished, do they consider what can be done to improve the quality of the video that they are delivering.

Strides are being made to develop and evangelize best practices for high-quality delivery of video over the Internet, thanks in part to the Streaming Video Alliance (SVA). The recommendations, requirements, and guidelines being assembled by the SVA are helping to define new industry architectures and contribute to building best practices across the streaming video ecosystem to accelerate adoption worldwide.

Standards Pave the Way for Valuable Metrics

Without agreed-upon industry standards for both quality of service (QoS) and quality of experience (QoE), there can be no objective benchmark or performance measurement in the video delivery ecosystem.

The SVA’s guidelines define a common language that describes the effectiveness of network delivery and outlines key network delivery metrics: ideal video startup time, acceptable re-buffering ratio, average video encoding bitrates, and video start failure metrics.

The alliance’s main focus is on the bits you’ll never see – like optimization and delivery techniques.  As a technology enabler that addresses these bits, improving all the above, we are excited to join with content providers, CDNs and service providers to tackle the most pressing issues of streaming video delivery.

Content Is Going Everywhere

To feed the beast, the industry must band together to provide constant easy access to high-quality video content.  The name of the game is getting content to your consumer with the best quality and highest user experience possible, and the only way to do that is to increase file efficiency by optimizing file sizes and conserving bandwidth, to cut through the Internet clutter.

Today, consumers have widespread access to streaming video services with content choices coming online in ever greater quantities and at vastly improved quality. What is critically lacking is a broad-spectrum understanding of the nature of video quality problems as they occur.  Also, the cost of bandwidth in the age of data caps continues to be an open question. To help navigate through the clutter and help answer critical questions, visit our resource center for useful information.