2016 Paves the Way for a Next-Gen Video Encoding Technology Explosion in 2017

2016 has been a significant year for video compression as 4K, HDR, VR and 360 video picked up steam, paving the road for an EXPLOSION of HEVC adoption in 2017. With HEVC’s ability to reduce bitrate and file sizes up to 50% over H.264, it is no surprise that HEVC has transitioned to be the essential enabler of high-quality and reliable streaming video powering all the new and exciting entertainment experiences being launched.

Couple this with the latest announcement from HEVC Advance removing royalty uncertainties that plagued the market in 2016 and we have a perfect marriage of technology and capability with HEVC.

In this post we’ll discuss 2016 from the lenses of Beamr’s own product and company news, combined with notable trends that will shape 2017 in the advanced video encoding space.  

>> The Market Speaks: Setting the Groundwork for an Explosion of HEVC

The State of 4K

With 4K content creation growing and the average selling price of UHD 4K TVs dropping (and being adopted faster than HDTVs), 4K is here and the critical mass of demand will follow closely. We recently did a little investigative research on the state of 4K and four of the most significant trends pushing its adoption by consumers:

  • The upgrade in picture quality is significant and will drive an increase in value to the consumer – and, most importantly, additional revenue opportunities for services as consumers are preconditioned to pay more for a premium experience. It only takes a few minutes viewing time to see that 4K offers premium video quality and enhances the entertainment experience.
  • Competitive forces are operating at scale – Service Providers and OTT distributors will drive the adoption of 4K. MSO are upping their game and in 2017 you will see several deliver highly formidable services to take on pure play OTT distributors. Who’s going to win, who’s going to lose? We think it’s going to be a win-win as services are able to increase ARPUs and reduce churn, while consumers will be able to actually experience the full quality and resolution that their new TV can deliver.
  • Commercially available 4K UHD services will be scaling rapidly –  SNL Kagan forecasts the number of global UHD Linear channels at 237 globally by 2020, which is great news for consumers. The UltraHD Forum recently published a list of UHD services that are “live” today numbering 18 VOD and 37 Live services with 8 in the US and 47 outside the US. Clearly, content will not be the weak link in UHD 4K market acceptance for much longer.
  • Geographic deployments — 4K is more widely deployed in Asia Pacific and Western Europe than in the U.S. today. But we see this as a massive opportunity since many people are traveling abroad and thus will be exposed to the incredible quality. They will then return home to question their service provider, why they had to travel outside the country to see 4K. Which means as soon as the planned services in the U.S. are launched, they will likely attract customer more quickly than we’ve seen in the past.

HDR adds WOW factor to 4K

High Dynamic Range (HDR) improves video quality by going beyond more pixels to increase the amount of data delivered by each pixel. HDR video is capable of capturing a larger range of brightness and luminosity to produce an image closer to what can be seen in real life. Show anyone HDR content encoded in 4K resolution, and it’s no surprise that content providers and TV manufacturers are quickly jumping on board to deliver content with HDR. Yes, it’s “that good.” There is no disputing that HDR delivers the “wow” factor that the market and consumers are looking for. But what’s even more promising is the industry’s overwhelmingly positive reaction to it. Read more here.

Beamr has been working with Dolby to enable Dolby Vision HDR support for several years now, even jointly presenting a white paper at SMPTE in 2014. The V.265 codec is optimized for Dolby Vision and HDR10 and takes into account all requirements for both standards including full support for VUI signaling, SEI messaging, SMPTE ST 2084:2014 and ITU-R BT.2020. For more information visit http://beamr.com/vanguard-by-beamr-content-adaptive-hevc-codec-sdk

Beamr is honored to have customers who are best in class and span OTT delivery, Broadcast, Service Providers and other entertainment video applications. From what we see and hear, studios are uber excited about HDR, cable companies are prepping for HDR delivery, Satellite distributors are building the capability to distribute HDR, and of course OTT services like Netflix, FandangoNow (formerly M-GO), VUDU, and Amazon are already distributing content using either Dolby Vision or HDR10 (or both). If your current video encoding workflow cannot fully support or adequately encode content with HDR, it’s time to update. Our V.265 video encoder SDK is a perfect place to start.

VR & 360 Video at Streamable Bitrates

360-degree video made a lot of noise in 2016.  YouTube, Facebook and Twitter added support for 360-degree videos, including live streaming in 360 degrees, to their platforms. 360-degree video content and computer-generated VR content is being delivered to web browsers, mobile devices, and a range of Virtual Reality headsets.  The Oculus Rift, HTC Vive, Gear VR and Daydream View have all shipped this year, creating a new market for immersive content experiences.

But, there is an inherent problem with delivering VR and 360 video on today’s platforms.  In order to enable HD video viewing in your “viewport” (the part of the 360-degree space that you actually look at), the resolution of the full 360 video delivered to you should be 4K or more.  On the other hand, the devices on the market today which are used to view this content, including desktops, mobile devices and VR headsets only support H.264 video decoding. So delivering the high-resolution video content requires very high bitrates – twice as much as using the more modern HEVC standard.

The current solution to this issue is lowered video quality in order to fit the H.264 video stream into a reasonable bandwidth. This creates an experience for users which is not the best possible, a factor that can discourage them from consuming this newly-available VR and 360 video content.  But there’s one thing we know for sure – next generation compression including HEVC and content adaptive encoding – and perceptual optimization – will be a critical part of the final solution. Read more about VR and 360 here.

Patent Pool HEVC Advance Announces “Royalty Free” HEVC software

As 4K, HDR, VR and 360 video gathers steam, Beamr has seen the adoption rate moving faster than expected, but with the unanswered questions around royalties, and concerns of who would shoulder the cost burden, distributors have been tentative. The latest move by HEVC Advance to offer a royalty free option is meant to encourage and accelerate the adoption (implementation) of HEVC, by removing royalty uncertainties.

Internet streaming distributors and software application providers can be at ease knowing they can offer applications with HEVC software decoders without incurring onerous royalties or licensing fees. This is important as streaming app content consumption continues to increase, with more and more companies investing in its future.

By initiating a software-only royalty solution, HEVC Advance expects this move to push the rest of the market i.e. device manufacturers and browser providers to implement HEVC capability in their hardware and offer their customers the best and most efficient video experience possible.

 

>> 2017 Predictions

Mobile Video Services will Drive the Need for Content-adaptive Optimization

Given the trend toward better quality and higher resolution (4K), it’s more important than ever for video content distributors to pursue more efficient methods of encoding their video so they can adapt to the rapidly changing market, and this is where content-adaptive optimization provides a massive benefit.

The boundaries between OTT services and traditional MSO (cable and satellite) are being blurred now that all major MSOs include TVE (TV Everywhere streaming services with both VOD and Linear channels) in their subscription packages (some even break these services out separately as is the case with SlingTV). And in October, AT&T CEO Randall Stephenson vowed that DirecTV Now would disrupt the pay-TV business with revolutionary pricing for an  Internet-streaming service at a mere $35 per month for a package with more than 100 channels.

And get this – AT&T wireless is adopting the practice of “zero rating” for their customers, that is, they will not count the OTT service streaming video usage toward the subscriber’s monthly data plan. This represents a great value for customers, but there is no doubt that it puts pricing pressure on the operational side of all zero rated services.

2017 is the year that consumers will finally be able to enjoy linear as well as VOD content anywhere they wish even outside the home.

Beamr’s Contribution to MSOs, Service Providers, and OTT Distributors is More Critical Than Ever

When reaching to consumers across multiple platforms, with different constraints and delivery cost models, Beamr’s content adaptive optimizer perfects the encoding process to the most efficient quality and bitrate combination.

Whether you pay by the bit delivered to a traditional CDN provider, or operate your own infrastructure, the benefits of delivering less traffic are realized with improved UX such as faster stream start times and reduced re-buffering events, in addition to the cost savings. One popular streaming service reported to us that after implementing our content-adaptive optimization solution their rebuffering events as measured on the player were reduced by up to 50%, while their stream start times improved 20%.

Recently popularized by Netflix and Google, content-adaptive encoding is the idea that not all videos are created equal in terms of their encoding requirements. Content-adaptive optimization complements the encoding process by driving the encoder to the lowest bitrate possible based on the needs of the content, and not a fixed target bitrate (as seen in traditional encoding processes and products).

A content-adaptive solution can optimize more efficiently by analyzing already-encoded video on a frame-by-frame and scene-by-scene level, detecting areas of the video that can be further compressed without losing perceptual quality (e.g. slow motion scenes, smooth surfaces).

Provided the perceptual quality calculation is performed at the frame level with an optimizer that contains a closed loop perceptual quality measure, the output can be guaranteed to be the highest quality at the lowest bitrate possible. Click the following link to learn how Beamr’s patented content adaptive optimization technology achieves exactly this result.

Encoding and Optimization Working Together to Build the Future

Since the content-adaptive optimization process is applied to files that have already been encoded, by combining an industry leading H.264 and HEVC encoder with the best optimization solution (Beamr Video), the market will be sure to benefit by receiving the highest quality video at the lowest possible bitrate and file size. As a result, this will allow content providers to improve the end-user experience with high quality video, while meeting the growing network constraints due to increased mobile consumption and general Internet congestion.

Beamr made a bold step towards delivering on this stated market requirement by disrupting the video encoding space when in April 2016 we acquired Vanguard Video – a premier video encoding and technology company. This move will benefit the industry starting in 2017 when we introduce a new class of video encoder that we call a Content Adaptive Encoder.

As content adaptive encoding techniques are being adopted by major streaming services and video platforms like YouTube and Netflix, the market is gearing up for more advanced rate control and optimization methods, something that fits our perceptual quality measure technology perfectly. This fact when combined with Beamr having the best in class HEVC software encoder in the industry, will yield exciting benefits for the market. Read the Beamr Encoder Superguide that details the most popular methods for performing content adaptive encoding and how you can integrate them into your video workflow.

One Year from Now…

In one year from now when you read our post summarizing 2017 and heralding 2018, what you will likely hear is that 2017 was the year that advanced codecs like HEVC combined with efficient perceptually based quality measures, such as Beamr’s, provide an additional 20% or greater bitrate reduction.

The ripple effect of this technology leap will be that services struggling to compete today on quality or bitrate, may fall so far behind that they lose their ability to grow the market. We know of many multi-service operator platforms who are gearing up to increase the quality of their video beyond the current best of class for OTT services. That is correct, they’ve watched the consumer response to new entrants in the market offering superior video quality, and they are not sitting still. In fact, many are planning to leapfrog the competition with their aggressive adoption of content adaptive perceptual quality driven solutions.  

If any one service assumes they have the leadership position based on bitrate or quality, 2017 may prove to be a reshuffling of the deck.

For Beamr, the industry can expect to see an expansion of our software encoder line with the integration of our perceptual quality measure which has been developed over the last 7 years, and is covered by more than 50 patents granted and pending. We are proud of the fact that this solution has been shipping for more than 3 years in our stand-alone video and photo optimizer solutions.

It’s going to be an exciting year for Beamr and the industry and we welcome you to join us. If you are intrigued and would like to learn more about our products or are interested in evaluating any of our solutions, check us out at beamr.com.

Before you evaluate x265, read this!

With video consumption rising and consumer preferences shifting to 4K UHD this is contributing to an even faster adoption rate than what we saw with the move to HD TV. Consumer demand for a seamless (buffer-free) video experience is a new expectation, and with the latest announcement from HEVC Advance removing royalty uncertainties in the market it’s time to start thinking about building and deploying an HEVC workflow, starting with a robust HEVC encoder.

As you may know, Beamr’s V.265 was the first commercially deployed HEVC codec SDK and it is in use today by the world’s largest OTT streaming service. Even still, we receive questions regarding V.265 in comparison to x265 and in this post we’d like to address a few of them.

In future posts, we will discuss the differences in two distinct categories, performance (speed) and quality, but in this post we’ll focus on feature-related differences between V.265 and x265.

Beginning with our instruction set, specifically support for X86/x64 SMP Architecture, V.265 is able to improve encoding performance by leveraging a resource efficient architecture that is used by most multiprocessors today. Enabling this type of support allows each processor to execute different programs while working on discrete data sets to afford the capability of sharing common resources (memory, I/O device interrupt system and so on) that are connected using a system bus or a crossbar. The result is a notable increase in overall encoding speed with V.265 over x265. For any application where speed is important, V.265 will generally pull ahead as the winner.

Another area V.265 shines compared to x265 is with its advanced preprocessing algorithm support that provides resizing and de-interlacing. As many of you know, working with interlaced video can lead to poor video quality so to try and minimize the various visual defects V.265 uses a variety of techniques like line doubling where our smart algorithms are able to detect and fill in an empty row by averaging the line above and the line below. The advantages of having a resizing feature is recognizable, largely saving time and resources, and out of the box V.265 allows you to easily convert video from one resolution to another (i.e. 4K to HD). One note, we are aware that x265 supports these features via FFMPEG. However in the case that a user is not able to use FFMPEG, the fact that V.265 supports them directly is a benefit.

V.265 boasts an unmatched pre-analysis library with fading detection and complexity analysis capabilities not supported in x265. An application for the V.265 library is video segmentation that is problematic with many encoders because of the different ways two consecutive shots may be linked. In V.265, the fading detection method detects the type of gradual transition, fade type etc. which is needed to detect hard to recognize soft cuts. V.265’s complexity analysis is able to discriminate temporal and spatial complexity in video sequences with patented multi-step motion estimation methods that are more advanced than standard “textbook” motion estimation algorithms. The information gained from doing a video complexity analysis is used during the encoding process to improve encoding quality especially during transitions between scenes.

One of the most significant features V.265 offers compared to x265 is multistreaming (ABR) support. V.265 can produce multiple GOP-aligned video output streams that are extremely important when encoding for adaptive streaming. It is critical that all bitrates have IDRs aligned to enable seamless stream switching, which V.265 provides.

Additionally, with V.265 users can produce multiple GOP-aligned HEVC streams from a single input. This is extremely important for use cases when a user has one chance to synchronize video of different resolutions and bitrates.  Multistreaming helps to provide encoded data to HLS or DASH packagers in an optimal way and it provides performance savings – especially when the service must output multiple streams of the same resolution, but at varying bitrates.


Another significant feature V.265 has over x265 is its content adaptive speed settings that makes codec configuration more convenient such as real-time compared to VOD workflows. Currently we offer presets ranging from ultra fast for extremely low latency live broadcast streams to the highest quality VOD.

To combat packet losses and produce the most robust stream possible, V.265 supports slicing by slice compressed size which produces encoded slices of limited sized (typically the size of a network packet) for use in an error prone network. This is an important feature for anyone distributing content on networks with highly variable QoS.

Continuing on to parallel processing features, V.265 offers support for tiles that divides the frame into a grid of rectangular regions that can be independently decoded and encoded. Enabling this feature increases encoding performance.

V.265 is regarded as one of the most robust codecs in the market because of its ability to suit both demanding real-time and offline file based workflows. To deliver the industry leading quality that makes V.265 so powerful, it offers motion estimation features like patented high performance search algorithms and motion vectors over a picture boundary to provide additional quality improvements over x265.

For encoding by frame-type, V.265 offers Bi- and uni-directional non-reference P-frames which is useful where low-delay encoding is needed to improve temporal scalability

As for encoding tools, V.265 offers a unique set of tools over x265:

  1. Joint bi-directional Motion Vector Search which is an internal motion estimation encoding technique that provides a better bi-direction motion vector search.
  2. Sub-LCU QP modulation that allows the user to change QP from block to block inside LCU as a way to control in-frame bits/quality more precisely.
  3. Support for up to 4 temporal layers of multiple resolutions in the same bitstream to help with changing network conditions.
  4. Region of Interest (ROI) control which allows for encoding of a specific ROI with a particular encoding parameter (qp) to add flexibility and improve encoding quality.

Another major advantage over x265 is the proprietary rate control implementation offered with V.265. This ensures target bitrates are always maintained.

The more supplemental enhancement information (SEI) messages a codec supports the more video usability information (VUI) metadata that may be delivered to the decoder in an encoded bitstream. For this reason, Beamr found it necessary to include in V.265 support for Recovery point, Field indication, Decoded Picture Hash, User data unregistered, and User data as specified by ITU-T T.35.

V.265’s ability to change encoding parameters on the fly is another extremely important feature that sets it apart from x265. With the ability to change encoder resolution, bitrate, and other key elements of the encoding profile, video distributors can achieve a significant advantage by creating recipes appropriate to each piece of content without needing to interrupt their workflows or processing cycles to reset and restart an encoder.

We trust this feature comparison was useful. In the event that you require more information or would like to evaluate the V.265, feel free to reach out to us at http://beamr.com/info-request and someone will get in touch to discuss your application and interest.

Patent Pool HEVC Advance Responds: Announces “Royalty Free” HEVC Software

HEVC Advance Releases New Software Policy

November 22nd 2016 may be shown by history as the day that wholesale adoption of HEVC as the preferred next generation codec began. For companies like Beamr who are innovating on next-generation video encoding technologies such as HEVC, the news HEVC Advance announced on to drop royalties (license fees) on certain applications of their patents is huge.

In their press release, HEVC Advance, the patent pool for key HEVC technologies stated that they will not seek a license fee or royalties on software applications that utilize the HEVC compression standard for encoding and decoding. This carve out only applies to software which is able to be run on commodity servers, but we think the restriction fits beautifully with where the industry is headed.

Did you catch that? NO HEVC ROYALTIES FOR SOFTWARE ENCODERS AND DECODERS!

Specifically, the policy will protect  “application layer software downloaded to mobile devices or personal computers after the initial sales of the device, where the HEVC encoding or decoding is fully executed in software on a general purpose CPU” from royalty and licensing fees.  

Requirements of Eligible Software

For those trying to wrap their heads around eligibility, the new policy outlines three requirements which the software products performing HEVC decoding or encoding must meet:

  1. Application layer software, or codec libraries used by application layer software, enabling software-only encoding or decoding of HEVC.
  2. Software downloaded after the initial sale of a related product (mobile device or desktop personal computer). In the case of software which otherwise would fit the exclusion but is being shipped with a product, then the manufacturer of the product would need to pay a royalty.
  3. Software must not be specifically excluded.

Examples of exempted software applications where an HEVC decode royalty will likely not be due includes web browsers, personal video conferencing software and video players provided by various internet streaming distributors or software application providers.

For more information check out  https://www.hevcadvance.com/

As stated previously, driven by the rise of virtual private and public cloud encoding workflows, provided an HEVC encoder meets the eligibility requirements, for many companies it appears that there will not be an added cost to utilize HEVC in place of H.264.

A Much Needed Push for HEVC Adoption

As 4k, HDR, VR and 360 video are gathering steam, Beamr has seen the adoption rate moving faster than expected, but with the unanswered questions around royalties, and concerns of the cost burden, even the largest distributors have been tentative. This move by HEVC Advance is meant to encourage and accelerate the adoption (implementation) of HEVC, by removing uncertainties in the market.

Internet streaming distributors and software application providers can be at ease knowing they can offer applications with HEVC software decoders without incurring onerous royalties or licensing fees. This is important as streaming app content consumption continues to increase, with more and more companies investing in its future.

By initiating a software-only royalty solution, HEVC Advance expects this move to push the rest of the market i.e. device manufacturers and browser providers to implement HEVC capability in their hardware and offer their customers the best and most efficient video experience possible.

What this Means for a Video Distributor

Beamr is the leader in H.265/HEVC encoding. With 60 engineers around the world working at the codec level to produce the highest performing HEVC codec SDK in the market, Beamr V.265 delivers exceptional quality with much better scalability than any other software codec.

Industry benchmarks are showing that H.265/HEVC provides on average a 30% bitrate efficiency for the same quality and resolution over H.264. Which given the bandwidth pressure all networks are under to upgrade quality while minimizing the bits used, there is only one video encoding technology available at scale to meet the needs of the market, and that is HEVC.

The classic chicken and egg problem no longer exists with HEVC.

The challenge every new technology faces as it is introduced into the market is the classic problem of needing to attract implementers and users. In the case of a video encoding technology, without an appropriately scaled video playback ecosystem, no matter the benefits, it cannot be deployed without a sufficiently large number of players in the market.

But the good news is that over the last few years, and as consumers have propelled the TV upgrade cycle forward, many have opted to purchase UHD 4k TVs.

Most of the 2015-2016 models of major brand TVs have built-in HEVC decoders and this trend will continue in 2017 and beyond. Netflix, Amazon, VUDU, and FandangoNow (M-GO) are shipping their players on most models of UHD TVs that are capable of decoding and playing back H.265/HEVC content from these services. These distributors were all able to utilize the native HEVC decoder in the TV, easing the complexity of launching a 4k app.

For those who wonder if there is a sufficiently large ecosystem of HEVC playback in the market, just look at the 90 million TVs that are in homes today globally (approximately 40 million are in the US). And consider that in 2017 the number of 4k HEVC capable TV’s will nearly double to 167 million according to Cisco, as illustrated below.

cisco-vni-global-ip-traffic-forecast-2015-2020

The industry has spoken regarding the superior quality and performance of Beamr’s own HEVC encoder, and we will be providing benchmarks and documentation in future blog posts. Meanwhile our team of architects and implementation specialists who work with the largest service providers, SVOD consumer streaming services, and broadcasters in the world are ready to discuss your migration plans from H.264 to HEVC.

Just fill out our short Info Request form and the appropriate person will get in touch.

Shows Without Safety Nets: The Lasting Appeal of Live TV

Live video streaming is certainly popular these days, but it’s not a new concept. Instead, it hearkens back to a beloved form of 20th-century entertainment: live scripted television. In fact, this type of non-news, non-sports programming endures to this day.

Live TV Enthralls a Nation

During the 1950s, comedies and dramas on TV were often live. Variety programs like “Your Show of Shows” were full of energetic comedy sketches. Anthology shows were popular as well. “Playhouse 90,” for one, staged different dramatic productions each week. When you tuned in, it was like watching a 90-minute play. For example, “Days of Wine and Roses,” which concerns a couple battling alcoholism, was a gripping 1958 TV movie before it became an acclaimed 1962 film.

However, in 1951, CBS decided to film “I Love Lucy” in front of a studio audience. By the 1960s, live primetime TV had become scarce partly due to this show’s success.

Live Sitcoms? Not.

Let’s give credit to “Roc,” a Fox sitcom about a sanitation worker. The show averaged around 9 million viewers during its first season (1991-92). But when it aired a live show in February 1992, the episode attracted approximately 11 million. The producers then decided to do the whole second season live. It didn’t go as well the second time around.

In March 2015, NBC’s “Undateable” revived this approach. The comedy, which revolves around some slovenly singles, televised a season of live episodes. Unfortunately, like “Roc,” it’s far from a hit.

Live Episodes and Musicals

In 1997, the season premiere of the NBC medical drama “ER,” entitled “Ambush,” was broadcast live. Cast member George Clooney, a fan of 1950s TV, had urged the producers to approve a live episode. The actors had to perform it twice, the second time for the West Coast. With 42.7 million viewers, it was a massive ratings success. And it prompted several other shows to telecast their own live episodes, including NBC’s “30 Rock” and “The West Wing.”

Additionally, in recent years, television has been lighting up social media with live versions of musicals. This trend started with 2013’s “The Sound of Music Live!” on NBC, which starred country singer Carrie Underwood. Filmed at New York’s Grumman Studios, it was the first live Broadway musical on TV in more than 50 years. Nearly 38.7 million viewers caught at least some of this three-hour show, and it averaged about 18.6 million viewers at any one moment.

Video Streaming: Live TV for the 21st Century?

Live TV has lasted because it gives people the feeling that they’re having a unique experience. After all, no one knows what might happen during such a performance. Actors could forget their lines, or an earthquake could hit the studio.

Live video streaming offers that same anything-can-happen thrill. Plus, marketing professionals value it as it lets them interact with consumers and get a sense of their opinions.

Best of all, these videos draw people closer. Friends and family members can sit with laptops, tablets and smartphones and watch them at the same time. Whether they’re in the same room or viewing remotely, a special camaraderie arises. It’s the emotional connection that forms when you know that others are feeling what you’re feeling. Yes, there’s real joy in laughing, crying and gasping as a group.

Moreover, whenever you’re watching a video of a one-time-only event ― for instance, a Periscope video of a birth or graduation ― the shared viewing becomes even more powerful.

It’s the kind of togetherness that many people must’ve known as they gathered in living rooms to watch “Your Show of Shows” and “Playhouse 90” way back when.

Which has us thinking, will services like Facebook live become the new reality TV format? With Facebook now serving 8 billion views a day, a 100% increase over just 6 months earlier according to this TechCrunch article. There is no doubt that the shared, social experience of live video is here to stay.

But what this means technically is what motivates Beamr’s team of 60 video codec engineers and image scientists to not stop innovating. As consumer expectations are increasing for better video quality and improved streaming stability, never before has the need for high quality video encoding that makes the best use of as few bits as possible, been needed.

The State of Commercially Available 4K UHD Services

In a recent article we did a little investigative research on the state of 4K and four significant trends:

  1. The upgrade in picture quality is significant and will drive an increase in value to the consumer – and additional revenues for services.
  2. Competitive forces are operating at scale – Service Providers and OTT distributors will drive the adoption of 4K.
  3. SNL Kagen forecasts the number of global UHD Linear channels at 95 by the end of 2016 – and 237 globally by 2020.
  4. Geography. 4K is already far more widely deployed in Asia Pacific and Western Europe than in the U.S.

In this article we want to further highlight the state of commercially available 4K UHD services. The UltraHD Forum published a list of UHD services that are “live” and it’s worth checking out.

To break it down, there are 18 VOD and 37 Live services with 8 in the US and 47 outside the US.

The 4K adoption rate isn’t moving as slowly as one might think, so don’t make the mistake of misreading its speed. It’s time to start building your 4K workflows now as the competitive pressure is fast approaching.

Note: The following UHD service chart is courtesy UltraHD Forum.

Operator Country Service Topology Delivery Model Notes
AcTVila Japan VoD OTT Unicast ABR
airtel 4K India Live IPTV broadcast
Amazon US VoD OTT Unicast ABR
Bein Middle East Live DTH Broadcast
BT UK Live IPTV broadcast
Comcast US Push VoD Cable DOCSIS 3.x NBC used HDR10 & Atmos for Rio Olympics
Dalian Tiantu China TS Playout Cable unverified
DirecTV US VoD DTH Push VoD
Dish UHD promo Live IPTV broadcast
Fashion one (SES) Luxembourg Live DTH broadcast
Festival4K France Live IPTV broadcast
Fransat France Live DTH broadcast
Fransat France TS Playout DTH broadcast
Free France Live IPTV Multicast Android middleware, 1 channel at launch: Fashion TV loop
Globo TV Brazil VoD OTT Unicast ABR
High 4K TV Live IPTV broadcast
insight Live IPTV broadcast
Inspur China Live Cable unverified
J:COM Japan Live Cable Broadcast
KPN Netherlands Live IPTV Multicast
KT Korea Live IPTV Multicast
LG Uplus Korea VoD / Live ? IPTV Multicast
M-Go US VoD OTT Unicast ABR
Nasa TV US/Europe Live IPTV broadcast
Netflix US VoD OTT Unicast ABR
NOS Portugal Live Cable Broadcast, Multicast, Unicast ABR OTT trials have occured
NTT Plala Japan Live / VoD IPTV Multicast
Orange France France Live IPTV Multicast Dolby Atmos available on some broadcasts
pearl tv Luxembourg Live DTH broadcast
SFR France Live IPTV Multicast UHD used to promote Fiber
SKBB Korea Live IPTV Multicast
Sky Deutschland Germany Live / Push-VoD DTH / Cable broadcast Launched October 5th 2016, 2 Live channels + Push VoD
Sky Italia Italy Live DTH broadcast “Super HD” launched June 2016, HDR Announced for 2017
Sky UK UK Live DTH broadcast Available to premium Sky Q customers
SkyLife Korea Live DTH broadcast
SkyPerfecTV Japan Live DTH / Opticast broadcast HDR announced for October 2016
Slovak Telecom Slovakia VoD OTT Unicast ABR
Sony US VoD OTT Unicast ABR
Sth Korea’s Pandora Korea VoD OTT Unicast ABR
Stofa Dennmark Live cable Multicast Viasat Ultra HD
Swisscom Switzerland Live & VoD IPTV Multicast Testing HDR
Tata Sky India Live DTH broadcast cricket world cup’15
Telekom Malaysia Malaysia Live IPTV Multicast Demonstration/Trials – Launch soon
Telus Canada VoD OTT Unicast ABR Starts with VoD – Live coming soon
Tivusat Italy Live DTH Broadcast
Tricolor Russia TS Playout DTH broadcast
Turkcell Turkey Live IPTV Multicast
UHD-1 Live IPTV broadcast
UMAX Korea TS Playout Cable broadcast
Videocon India Live DTH broadcast cricket world cup’15
Vidity US VoD OTT Unicast ABR
Vodafone Portugal Portugal Live IPTV Multicast
Vodafone Spain Spain Live / VoD IPTV Multicast, Unicast
VUDU US VoD OTT Unicast ABR Dolby Vision and Atmos support announced
waiku tv France VoD OTT Unicast ABR

We Need a Revolution of 4K!

Don’t panic or stop reading, we used the word ‘revolution’ in the title and though admittedly it’s provocative being less than a week from the US Presidential elections, we are talking about entertainment and TV, not politics. Cue the massive sigh of relief here…

Our story starts with a recent article published in PC Magazine titled “Meet Two Companies That Want to Revolutionize 4K Video”, where the author Troy Dreier examines the state of 4K and some of the issues surrounding the rate of 4K adoption, specifically a chicken-and-egg problem. As Dreier points out, 4K UHD TVs are being bought in considerable numbers “over 8 million 4K TVs to date, 1.4 million in the US.”

But what about content?

Although, 4K is already far more widely deployed in Asia Pacific and Western Europe, in the US cable and satellite customers are seeing limited content choices, with almost no options in broadcast, leaving consumers turning to online distribution services to satisfy their needs.

But with this comes another problem facing streaming providers, the commodity of the internet: bits.

Though the internet is getting much faster and infrastructure is improving, overall average speeds are still just 15.3 Mbps per household, making it difficult to deliver 4K UHD video sustainably. Or at least with the quality promise that the TV vendors are making. This ultimately, puts the pressure on network operators and over-the-top content suppliers to do everything they can to lower the number of bits they transport without damaging the picture quality of the video.

To this point, Dreier suggests that video optimization solutions are needed to “condense 4K video.” Dreier goes on to point out two solutions that are solving this problem, and one of them he highlights is Beamr’s content adaptive optimization solution, Beamr Video.

At the heart of our video encoding and processing technology solutions is the Beamr content adaptive quality measure that is backed up by more than 20 granted patents with another 30 still pending.  

The Beamr Video optimization technology is based on a proprietary, low complexity, reliable, perceptual quality measure. Or put simply, we have the most advanced commercially available content adaptive quality measure available. The existence of this measure enables controlling a video encoder, to obtain an output clip with maximal compression of the video input, while still maintaining the input video resolution, format and visual quality. This is performed by controlling the compression level frame by frame, in such a way that the maximum number of bits are squeezed out of the file, while still resulting in a perceptually identical visual output.

An important characteristic of our quality measures is that it operates as a full-reference to the source which insures that artifacts are never introduced as a result of the bitrate reduction process. Many “alternative” solutions struggle with inconsistent quality as they operate in an open loop, which means at times quality may be degraded while at other times they leave “bits on the table.”

With so much at stake for next generation entertainment formats, it is critical that every new encoding and video processing technology be evaluated for quality and useability. This is why we are proud of the customers we have which include major Hollywood studios, premium OTT content distributors, MSOs and large video platforms.

Beamr Video in the real world with 720p VBR input, reduced 21%:

beamr_video_live

For more information on the why and how behind content adaptive solutions, download the free Beamr Content Adaptive Tech Guide.

4 Facts about 4K

We recently did a little investigative research on the state of 4k and here are four highlights of what we found.

To start, as an industry, we’ve been anticipating 4K for a few years now, but it was just this past April that DIRECTV launched the first-ever Live 4K broadcast from the Masters Golf Tournament. Read more here:

http://ktla.com/2016/03/30/get-ready-for-4k-programming-with-directv/

In May Comcast EVP Matt Strauss spoke with Multichannel News about the company’s plans to begin distributing a 4K HDR capable Xi6 set-top box, but not until 2017.

http://www.multichannel.com/news/content/building-video-momentum/405085

And Comcast did broadcast the Olympics in 4K, but only to the Xfinity App built in to a select set of Smart TVs. Also, as with DIRECTV and DISH Network, the 4K signals were broadcast after a 24-hour delay which I understand was caused mostly by content prep requirements. 

Meanwhile for VOD, Netflix and Amazon are in the game producing and delivering 4K content. While VUDU and FandangoNow also have a limited set of licensed content available for streaming delivery.

Watch Dave Ronca discuss Netflix 4K workflow and technology architecture at Streaming Media East.

As for linear 4K UHD options, in the U.S. today there are just a few TV channels available with the only major operator offering a 24×7 4K UHD linear TV channel being DIRECTV. (There is also a small operator in Chattanooga Tennessee with five 4K UHD channels)

Given the seeming “lack of content” and esoteric discussions about 4K not being easy to “actually see” because most screen sizes are too small due to the extended viewing distance in most homes, you’d be excused for thinking that 4K is still a ways out.

But… our research took us to Best Buy, where the store is filled wall to wall with 4K UHD capable TVs.

Our conclusion?

Forget everything you’ve read: The upgrade in picture quality is real and it’s awesome.

And that brings us to the first key fact about 4K UHD:

  1. The upgrade in picture quality is significant – and it will drive an increase in value to the consumer – and drive additional revenues in return.

SNL Kagan data released in July 2016 the following data. Nearly 2 out of 3 service providers and content producers they surveyed reported they believe consumers are willing to pay more for 4k UHD content. (4K Global Industry Forecast, SNL Kagan, July 2016)

However, it’s important to note that this stunning picture quality isn’t simply resolution. In fact, as we’ll point out in an upcoming white paper, High Dynamic Range is probably as important a feature in today’s 4K UHD TVs as resolution.

HDR enables three key things. Most essentially, HDR improves camera hardware by capturing the high contrast ratios – lighter lights and darker darks – that exist in the real world. As such, HDR images provide more ‘realism’ – and to stunning effect. Also, HDR provides greater luminance (brighter) and thirdly, it offers a wider color gamut (redder reds and greener greens.)

If that consumer benefit can translate into revenue impact, and we believe it will, this will drive accelerated service provider adoption, particularly given our 2nd fact finding about 4k:

  1. Competitive forces operating at scale – amongst Service Providers and OTT providers will drive the adoption of 4K.

Once 4K rollouts start, many in the business feel it will move lightning fast compared to the HD rollout. Why? Consolidation has created more scale in the TV market.

Plus you need to add competitive pressure to the mix with digital leaders like Netflix setting a high video quality bar for not only OTT competitors but MVPDs.

Meantime, major video service providers have been aggressive in efforts to dominate and extend their footprint into consumer homes. Fear and competition will drive decision making and actions at MVPDs as much as consumer delight.

All of the growth pressure described in #2 manifests itself in the growing forecasts for UHD linear TV channel launches.

  1. SNL Kagan forecasts the number of global UHD Linear channels at 95 by the end of 2016 – and 237 globally by 2020.

Of course, this is a chicken-and-egg problem. Few consumers want to purchase 4K TVs if there isn’t enough content to be displayed on them.

But as Tim Bajarin of Creative Strategies points out, until 35-40% of homes have a 4K TV, the cable and broadcast networks won’t justify sizable numbers of 4K channel launches. [USA TODAY Jan 2 2016, “More 4K TV programming finally here in 2016”]

Which leads us to our 4th key fact about 4k UHD TV.

  1. Don’t forget about Geography. 4K is already far more widely deployed in Asia Pacific and Western Europe than in the U.S.

It’s clear that 4K UHD is in the earliest stages of a commercial rollout. Yet it is surprising to see how far behind the U.S. is in 4K UHD channel launches, at least according to the SNL Kagan report previously referenced.

In that report, the North American region had just 12% of linear 4K UHD channels globally, compared with 42% in Asia Pacific, and 30% in Western Europe.

But as you think about the state of 4K and your company’s investment level whether that be in acquiring content rights, licensing HEVC encoders, or upgrading your network and streaming technologies to accommodate the increased bandwidth demands, don’t make the mistake of misreading the speed of adoption. Start acquiring content and building your 4K workflows now, because when the competitive pressure arrives to have a full UHD 4K offer (and it will come) you do not want to be scrambling.

Can we profitably surf the Video Zettabyte Tsunami?

Two key ingredients are in place. But we need to get started now.

In a previous post, we warned about the Zettabyte video tsunami – and the accompanying flood of challenges and opportunities for video publishers of all stripes, old and new. 

Real-life tsunamis are devastating. But California’s all about big wave surfing, so we’ve been asking this question: Can we surf this tsunami?

The ability to do so is going to hinge on economics. So a better phrasing is perhaps: Can we profitably surf this video tsunami?

Two surprising facts came to light recently that point to an optimistic answer, and so we felt it was essential to highlight them.

1. The first fact is about the Upfronts – and it provides evidence that 4K UHD content can drive growth in top-line sales for media companies.

The results from the Upfronts – the annual marketplace where networks sell ad inventory to premium brand marketers – provided TV industry watchers a major upside surprise. This year, the networks sold a greater share of ad inventory at their upfront events, and at higher prices too. As Brian Steinberg put it in his July 27, 2016 Variety1 article:

“The nation’s five big English-language broadcast networks secured between $8.41 billion and $9.25 billion in advance ad commitments for primetime as part of the annual “upfront” market, according to Variety estimates. It’s the first time in three years they’ve managed to break the $9 billion mark. The upfront finish is a clear signal that Madison Avenue is putting more faith in TV even as digital-video options abound.”

Our conclusion? Beautiful, immersive content environments with a more limited number of high-quality ads can fuel new growth in TV. And 4K UHD, including the stunning impact of HDR, is where some of this additional value will surely come from.

Conventional wisdom is that today’s consumers are increasingly embracing ad-free SVOD OTT content from premium catalogs like Netflix, even when they have to pay for it. Since they are also taking the lead on 4K UHD content programming, that’s a great sign that higher value 4K UHD content will drive strong economics. But the data from the Upfronts also seems to suggest that premium ad-based TV content can be successful as well, especially when the Networks create immersive, clutter-free environments with beautiful pictures. 

Indeed, if the Olympics are any measure, Madison Avenue has received the message and turned up their game on the creative. I saw more than a few head-turning :30-second spots. Have you seen the Chobani ads in pristine HD? They’re as powerful as it gets.2

Check out this link to see the ads.

2. The second fact is about the operational side of the equation.

Can we deliver great content at a reasonable cost to a large enough number of homes?  On that front, we have more good news. 

The Internet in the United States is getting much faster. This, along with advanced methods of compression including HEVC, Content Adaptive Encoding and Perceptual Quality Metrics, will result in a ‘virtual upgrade’ of existing delivery network infrastructure. In particular, Ookla’s Speedtest.net published data on August 3, 2016 contained several stunning nuggets of information. But before we reveal the data, we need to provide a bit of context.

It’s important to note that 4K UHD content requires bandwidth of 15 Mbps or greater. Let’s be clear, this assumes Content Adaptive Encoding, Perceptual Quality Metrics, and HEVC compression are all used in combination. However, in Akamai’s State of the Internet report released in Q1 of this year, only 35% of the US population could access broadband speeds of 15 Mbps.

(Note: We have seen suggestions that 4K UHD content requires up to 25 Mbps. Compression technologies improve over time and those data points may well be old news. Beamr is on the cutting edge of compression and we firmly believe that 10 – 15 Mbps is the bandwidth needed – today – to achieve stunning 4K UHD audio visual quality.)

And that’s what makes Ookla’s data so important. Ookla found that in the first 6 months of 2016, fixed broadband customers saw a 42% year-over-year increase in average download speeds to a whopping 54.97 Mbps. Even more importantly, while 10% of Americans lack basic access to FCC target speeds of 25 Mbps, only 4% of urban Americans lack access to those speeds. This speed boost seems to be a direct result of industry consolidation, network upgrades, and growth in fiber optic deployments.

After seeing this news, we also decided to take a closer look at that Akamai data. And guess what we found? A steep slope upward from prior quarters (see chart below).

To put it back into surfing terms: Surf’s Up!
time-based-trends-in-internet-connection-speeds-and-adoption-rates

References:

(1) “How TV Tuned in More Upfront Ad Dollars: Soap, Toothpaste and Pushy Tactics” Brian Steinberg, July 27, 2016: http://variety.com/2016/tv/news/2016-tv-upftont-networks-advertising-increases-1201824887/ 

(2)  Chobani ad examples from their YouTube profile: https://www.youtube.com/watch?v=DD5CUPtFqxE&list=PLqmZKErBXL-Nk4IxQmpgpL2z27cFzHoHu

Is the Market Ready for 4K TV?

4K TV, also known as Ultra-HD or UHD TV, is the hottest buzzword at the moment in the entertainment tech scene. It’s redefining what we know about image quality, and shaking up the markets of video capture, editing, management, delivery and consumption.

Ultra HD is a resolution of 3840 × 2160 pixels, or 8.3 megapixels. That’s twice the horizontal and vertical resolution of the current 1080p “Full HD” format, with four times as many pixels overall. But UHD doesn’t mean just more pixels: While upgrading the resolution, industry players also want to offer “better pixels”, by increasing the bit depth, color depth and frame rate of the video to improve the overall viewing experience. More pixels and better pixels meant that more data is captured, edited and encoded, meaning that more bits are needed to faithfully represent the video content.

16-9-resolutions-in-comparison

TV manufacturers are unveiling and pushing 4K TVs now. Sharp has unveiled an update to its line of Aquos 4K TVs to hit the market this fall. Doubling down on the 4K trend later this year is the new UD27 line of Sharp’s Aquos 4K Ultra HD LED TVs in both 60 and 70-inch varieties. Sharp was also keen to point out that these models will be able to stream 4K content from providers like Netflix, and all four of the TVs’ HDMI ports will accept UHD signals at up to 60 frames per second.

Sharp-Aquos-4K-TV

 

Samsung bets on 4K Amazon and Netflix streaming to make UHD TV more tempting. The Samsung TVs will be able to stream movies and TV in UHD from Amazon’s video streaming on-demand service from October. That will be available “globally”, although Samsung hasn’t confirmed exactly which countries that includes. Netflix launched UHD back in April across the US and other countries, starting with “House of Cards”. Samsung will now show Netflix UHD streaming for viewers in Europe.

Samsung 4K TV

In the recent 2014 World Cup, the interesting news wasn’t that USA was doing better than England, but that 4K TV was being pushed surprisingly hard. One of the main ads around the edge of the pitch was for Sony 4K. Sony was filming three games in 4K, including the World Cup final. Sony used its own PMW-F55 CineAlta 4K cameras to shoot these games, (the camera is priced at $30,000 each before lenses), and its own custom workflow to handle and edit all of the 4K footage. This “Official 4K World Cup film” will then be made available to Sony Bravia 4K TV owners at some point in the future.

Sony-Bravia-4K-TV

There is one famous question that keeps coming up when discussing 4K TVs. Where do I find 4K content? There’s really nothing to watch on 4K. Why not? Every 4K frame contains four times the information, so the size of files and streams is increased by 4 times compared to current 1080p HD content. This makes it quite challenging to get the content to you. Broadcast TV hasn’t made the 4K switch yet, nor did Cable or Satellite TV. There’s not even a 4K standard for optical discs. in fact, most of the news around 4K content lately is related to streaming, which fits perfectly with the trend of “cable cutting” and content delivery over the Internet.

But here lies the problem: 4K requires a bitrate of 15-20 Mbps even when using the newest codec – HEVC. We all know that this is beyond the average consumer bandwidth. In fact, Akamai’s 2014 “State of Internet” report found that global “4K readiness”, meaning the percentage of subscribers that have an average bandwidth of 15 Mbps or more, is only around 11%. This means that even if 4K streaming services are launched this year, they will be available to a very limited audience.

Here at Beamr Video, we came up with a solution that will take away the challenge of getting 4K to you. We can reduce HEVC bitrates by 30-50%, bringing the bitrate down and enabling streaming 4K HEVC over broadband to a much wider range of consumers. Not only do we cut the bitrate down, but we also preserve the full resolution and quality of the video – giving you a true 4K TV experience that is delivered smoothly over your existing broadband connection.