Live 4Kp60 Optimized Encoding with Beamr CABR and NVIDIA Holoscan for Media

This year at IBC 2024 in Amsterdam, we are excited to demonstrate Live 4K p60 optimized streaming with our Content-Adaptive Bitrate (CABR) technology on NVIDIA Holoscan for Media, a software-defined, AI-enabled platform that allows live video pipelines to run on the same infrastructure as AI. Using the CABR GStreamer plugin, premiered at the NAB Show earlier this year, we now support live, quality-driven optimized streaming for 4Kp60 video content.

It is no secret that savvy viewers are coming to expect the high-quality experience of 4K Ultra-High-Definition streamed at 60 frames per second for premium events. What started with a drizzle a few years back has become the high end norm for recent events such as the 2024 Olympics, where techies were sharing insights on where it could be accessed.

Given the fact that 4K means a whopping four times the pixels compared to full HD resolution, keeping up with live encoding of 4K at 60 fps can be quite challenging, and can also result in bitrates that are too high to manage.

One possible solution for broadcasters is to encode and transmit at 1080p and rely on the constantly improving upscalers available on TVs to provide the 4K experience, but this of course means they cannot control the user experience. A better solution is to have a platform that is super fast, and can create live 4Kp60 encodes, which combine excellent quality with an optimization process that minimizes the required bitrate for transmission.

Comparison of 4K Live video before and after optimization

Beamr CABR on Holoscan for Media offers exactly that, by combining the fast data buses and easy-to-use architecture of Holoscan for Media with Beamr hardware-accelerated, quality-driven optimized AV1 encoding. Together, it is possible to stream super efficient, 4K, lower bitrate encodes at top notch quality.

Content Adaptive Bitrate encoding, or CABR, is Beamr’s patented and award-winning technology that uses a quality measure to select the best candidate with the lowest bitrate and the same perceptual quality as a reference frame. In other words, users can enjoy 30-50% lower bitrate, faster delivery of files or live video streams and improved user experience – all with exactly the same quality as the original video.

In order to achieve aggressive bitrates which are feasible for broadcast of live events, we configure the system to use AV1 encoding. The advanced AV1 format has been around since 2018. However, its full potential has not been fully realized by many players in the video arena. AV1 is raising the bar significantly in comparison to previous modern codecs, such as AVC (H.264) or HEVC (H.265), in terms of efficiency, performance with GPUs and high quality for real-time video. When combined with CABR – AV1 is offering up even more. According to our tests, AV1 can reduce data by 50% compared to AVC and by 30% compared to HEVC. We also showed that CABR optimized AV1 is beneficial for machine learning tasks.

Putting all three of these technologies together, namely deploying Holoscan for Media with the Beamr CABR solution inside, which in turn is using NVIDIA’s hardware-accelerated AV1 encoder, provides a platform that offers spectacular benefits. With the rise in demand for high-quality live streaming at high resolution, high fps and manageable bitrates, while keeping an eye on the encoding costs – this solution is definitely an interesting prospect for companies looking to boost their streaming workflows.

Real-time Video Optimization with Beamr CABR and NVIDIA Holoscan for Media

This year at the NAB Show 2024 in Las Vegas, we are excited to demonstrate our Content-Adaptive Bitrate (CABR) technology on the NVIDIA Holoscan for Media platform. By implementing CABR as a GStreamer plugin, we have, for the first time, made bitrate optimization of live video streams easily achievable in the cloud or premise.

Building on the NVIDIA DeepStream software development kit, which can extends GStreamer’s capabilities, significantly reduced the amount of code required to develop the Holoscan for Media based application. Using DeepStream components for real-time video processing and NMOS (Networked Media Open Specifications) signaling, we were able to keep our focus on the CABR technology and video processing.

The NVIDIA DeepStream SDK provides an excellent framework for developers to build and customize dynamic video processing pipelines. DeepStream provides pipeline components that make it very simple to build and deploy live video processing pipelines that utilize the hardware decoders and encoders available on all NVIDIA GPUs.

Beamr CABR dynamically adjusts video bitrate in real-time, optimizing quality and bandwidth use. It reduces data transmission without compromising video quality, making the video streaming more efficient. Recently we released our GPU implementation which uses the NVIDIA NVENC, encoder, providing significantly higher performance compared to previous solutions.

Taking our GPU implementation for CABR to the next level, we have built a GStreamer Plugin. With our GStreamer Plugin, users can now easily and seamlessly incorporate the CABR solution into their existing DeepStream pipelines as a simple drop-in replacement to their current encoder component.

Holoscan For Media


A GStreamer Pipeline Example

To illustrate the simplicity of using CABR, consider a simple DeepStream transcoding pipeline that reads and writes from files.


Simple DeepStream Pipeline:
gst-launch-1.0 -v \
  filesrc location="video.mp4" ! decodebin ! nvvideoconvert ! queue \
  nvv4l2av1enc bitrate=4500 ! mp4mux ! filesink location="output.mp4"

By simply replacing the nvv4l2av1enc component with our CABR component, the encoding bitrate is adapted in real-time, according to the content, ensuring optimal bitrate usage for each frame, without any loss of perceptual quality.


CABR-Enhanced DeepStream Pipeline:
gst-launch-1.0 -v \
  filesrc location="video.mp4" ! decodebin ! nvvideoconvert ! queue \
  beamrcabvav1 bitrate=4500 ! mp4mux ! filesink location="output_cabr.mp4"


Similarly, we can replace the encoder component used in a live streaming pipeline with the CABR component to optimize live video streams, dynamically adjusting the output bitrate and offering up to a 50% reduction in data usage without sacrificing video quality.


Simple DeepStream Pipeline:
gst-launch-1.0 -v \
  rtmpsrc location=rtmp://someurl live=1 ! decodebin ! queue ! \ 
  nvvideoconvert ! queue ! nvv4l2av1enc bitrate=3500 ! \
  av1parse ! rtpav1pay mtu=1300 ! srtsink uri=srt://:8888

CABR-Enhanced DeepStream Pipeline:
gst-launch-1.0 -v \
  rtmpsrc location=rtmp://someurl live=1 ! decodebin ! queue ! \
  nvvideoconvert ! queue ! beamrcabrav1 bitrate=3500 ! \
  av1parse ! rtpav1pay mtu=1300 ! srtsink uri=srt://:8888


The Broad Horizons of CABR Integration in Live Media

Beamr CABR, demonstrated using NVIDIA Holoscan for Media at NAB show, marks just the beginning. This technology is an ideal fit for applications running on NVIDIA RTX GPU-powered accelerated computing and sets a new standard for video encoding.

Lowering the video bitrate reduces the required bandwidth when ingesting video to the cloud, creating new possibilities where high resolution or quality were previously costly or not even possible. Similarly, reduced bitrate when encoding on the cloud allows for streaming of higher quality videos at lower cost.

From file-based encoding to streaming services — the potential use cases are diverse, and the integration has never before been so simple. Together, let’s step into the future of media
streaming, where quality and efficiency coexist without compromise.

Beamr Live HEVC Encoding Speed Test on the Intel® Xeon® Scalable Platinum Processor

It’s no secret that Intel-based hardware is ubiquitous in many video encoding data centers, which explains the high level of interest in the new Intel® Xeon® Scalable Platinum processor family. This article examines the live HEVC 4Kp60 10-bit encoding performance from the perspective of speed with Beamr 5 running on the scalable Platinum 8180 where the results are nothing short of amazing.

Intel is known for pushing the state of art with ever faster and more capable processors, which enable software encoding vendors like Beamr to achieve performance benchmarks some thought impossible. Since Intel’s announcement of their new processor series, Beamr has been excited to see what is possible with the version 5 Xeon® processor.

The result? 

Mind-blowing.

Video services needing to encode live 4Kp60 10-bit HDR video can achieve 6 simultaneous streams on a dual-socket Intel® Xeon® Scalable Platinum 8180 processor using Beamr 5 v4.1. This performance represents a 6x speed advantage over x265 and establishes an entirely new benchmark for HEVC software encoders.

Intel & Beamr set new HEVC software encoding standard 4K HDR live with 6 simultaneous channels broadcast quality

CLICK HERE for a speed comparison of the Beamr 5 HEVC software encoder and x265 running on Amazon EC2.

Executive Introduction

As over-the-top (OTT) and IP overtake traditional linear delivery systems, the ability to encode video on software, in real time, is now a requirement.

  • According to Cisco, consumer Video-on-Demand (VoD) traffic will almost double by 2021. This trend is driven largely by new video services and entertainment formats such as Cloud DVR, UHD (4K), High Dynamic Range (HDR) and 360 degree AR/VR immersive video. These advanced video formats carry with them much greater encoding complexity which places high operational demands on the computing environment. This means more efficient software requires less server time which translates to fewer machines and lower capex and opex.
  • With content and operational costs rising, and end user pricing under pressure, it is essential for operators to invest in video encoding technology that can provide advanced services in the most efficient way possible. As NFV and virtualized container based architectures advance in the data center, encoding density and speed is becoming a critical vector within the encoder selection process. Also, the ability to operate across a wide range of general purpose platforms is essential. Many GPU bound solutions are inextricably linked to a single processor or limited series. Beamr’s HEVC encoder scales across the entire Intel® Xeon® family.
  • Apple is playing a pivotal role in enabling the HEVC ecosystem starting with iOS 11 and High Sierra. It is estimated that up to 1 billion devices in the Apple ecosystem can now play HEVC without any special update or third-party apps needed. With HEVC files now supported from big screens to mobile devices, video services can transition their entire library with all resolutions to HEVC, and benefit from the reduced bitrate and improved quality that HEVC is able to deliver. This represents hundreds of thousands if not millions of hours of content needing to be encoded by each video distributor.

With Beamr 5 running on an Intel® Xeon® Scalable processor, video encoding engineers can perform up to 6 times more live video encoding, which leads to a reduction in:

  1. Power
  2. Rackspace
  3. Capital investment

For more background, read Intel’s Solution Brief’s on the Intel® Xeon® Scalable processor family and the Beamr 5 HEVC video encoder.

6 simultaneous live hevc channels with beamr 5 & intel purley  

 

 

 

 

The new Beamr 5 HEVC software encoder exploits multiple features of the Intel® Xeon® Scalable platform, making it possible to deliver the performance of hardware with the scale and flexibility that only software allows. Beamr 5 is able to utilize the entire range of Intel® Xeon® processors from the entry-level Intel® Xeon® Processor E3 v5 family to the best in class Intel® Xeon® Platinum Scalable 8180 processor. For real-time live video encoding operations that require resolutions up to 4K and frame rates as high as 60 FPS, higher performance means less computing resources required.

Solutions like Beamr 5 running on Intel® Xeon® Scalable Platinum processors contribute to decidedly lower operational and capital investment costs.

In addition to the live workflow benefits, offline VoD applications can also benefit from greater performance as the shorter turnaround time to complete VoD encodes and transcodes means the content will be available for distribution more quickly.  

Beamr 5 opens up compelling options for MSOs, CDNs, and broadcasters to build video workflows that exceed their service expansion plans and technical goals while also enabling service operators to deploy media processing workflows across public clouds and on-premise data centers.

With Beamr 5 running on Intel® Xeon® processors, new video encoding workflows can be imagined as edge encoding services running Intel® Xeon® E3 processor-based points of presence (PoPs) for JIT transcoding are now possible. The high performance of Beamr 5 directly enables workflows to be split and re-deployed without a need to redesign workflows.

beamr 5 operating on intel scalable platinum processors offers the higher performance

Beamr’s Next-Generation Video Encoding Technology on Intel

At the foundation of Beamr’s HEVC software encoder is technology that stems from more than a dozen years of codec development by our codec engineering team. Though we’ve developed our solution and technical advantages entirely in-house, working closely with Intel gives us a significant technical and business advantage.

Of the many points related to how we achieved our massive speed advantage, the two we will highlight are motion estimation advantage and micro-level parallelization.

Incoming frames are extensively analyzed by Beamr 5. It is this step which determines the complexity of the scene as rough motion vectors are calculated, and estimates for the bit demand of the encoded frame are made. These estimates guide the second stage of the encoder and allow those activities to focus on visually meaningful aspects of the frame. By partitioning the encoding process, unproductive calculations can be avoided, thus improving the speed of the encoder and the quality it produces.

Second, Beamr 5 features micro-level parallelization which is the result of the codec engineering team leveraging software engineering lessons learned from earlier generations of Beamr real-time software encoders. This experience led the team to design a micro-level parallelization approach that stages portions of the encoding tasks in a controlled manner, staggering their execution so each micro-task begins when the data is available (and still in the cache). This results in wasteful power and CPU cycles spent writing and fetching data being eliminated. Careful design of these micro-tasks assures that they are executed efficiently across the whole frame and in an even manner so that all cores are kept uniformly busy, and none are left waiting for their next task.

Uniquely, the Beamr encoder does not rely on the operating system to manage these critical execution threads but instead is under full control of the pooling and process allocation between the available cores and threads. Beamr’s advanced encoder controls the execution priority based on the availability of pipelined data.

Test Methodology

As in part 1 of our x265 vs. Beamr 5 performance test, we encourage you to experience our speed claims first hand. For qualified video distributors, services and platforms, we are happy to offer a FREE evaluation agreement. To take advantage of this, please contact sales@beamr.com.

The purpose of this test was to measure the speed of Beamr 5 for live encoding applications running on Intel® Xeon® Scalable Platinum processors. In our first comparison of codec performance based on CPU, we decided to run a few comparisons with x265. For this comparison, x265 was benchmarked in its fastest speed setting ‘ultrafast’ – while for Beamr 5 we operated the encoder at its highest speed setting “15” with the performance boost modifier ‘TURBO1’ which activated our latest algorithmic improvements that are available in version 4.1. (All files were 4Kp60.)

For this second test, we wanted to dig deeper using Beamr 5 version 4.1 running on the same 2S Intel® Xeon® Platinum 8180 processor-based machine that we tested with in September, to see what gains were possible. What we found was nothing short of stunning.

In Graphic 1, HTOP shows Beamr 5 loaded 108 threads (from 112 available) at an impressive 90% utilization rate. This demonstrates the high degree of effectiveness with our Intel specific optimization.

Graphic 1: HTOP Intel 8180 dual socket 108 thread utilization at 90% across each thread.

intel purley beamr 5 cpu utilization hitop window

More speed and performance benchmarks from Intel: CLICK HERE.

Conclusion

The drive to increase density with software-based video encoding and transcoding infrastructure is key to securing a competitive advantage for multi-service operators, OTT video distributors, and content distribution networks. At the same time, video architects must enable encoding and delivery of advanced entertainment content, by embracing new technologies, capabilities, and codecs such as HEVC, HDR, and 4K.

With a Beamr + Intel® Xeon® optimized video encoding solution, density – efficiency – quality – and flexibility of video encoding operations for on-premises, cloud, and hybrid data centers can be realized. Beamr 5 running on Intel® Xeon® Scalable processors offers TCO benefits and provides a meaningful improvement to the video processing capabilities of any video distribution solution.

If you missed part 1 of this post, be sure to check it out since additional technical details about Beamr 5 and its operational and performance advantages against x265 were specifically discussed. Find the x265 vs. Beamr 5 Speed Test here.

The Need for Speed: x265 & Beamr 5 Epic Face Off

UPDATE 11/15/2017: Be sure to check out part 2 of this post which covers Beamr 5 performance on the new Intel Scalable Platinum processor.

 

This article offers a comparison between the performance and quality of the Beamr 5 HEVC software encoder, and the open-source x265 software encoder

There should be no debate over which standard will be the next generation winner with Apple’s adoption of HEVC (H.265). As the leading HEVC commercial software encoder implementer, we see video distributors who were waiting on the sideline prior to Apple’s announcement jumping into evaluations now that Apple has released the public versions of iOS 11 and macOS High Sierra.

The criteria for determining the best HEVC implementation will vary across application and service type and the business model of the video service will influence the decision of which solution to use. Yet, there is one factor that should be at the top of the decision tree for software based video encoders, and that is the performance (speed) of the encoder.

If you operate the encoding function for a live streaming service, then the performance and speed of your encoder is already top of mind, and the benefits of a solution which is 2 times faster is understood. But for those who operate SVOD and VOD services, the need to measure performance may not be as obvious. Read on to discover the benefits of operating a software encoder that is 2x faster.

Why a speed “face off”?

There is an inherent tradeoff between speed and quality with video encoder’s. With unlimited computing resources, one simply needs to apply the appropriate CPU power to meet the quality objective being targeted. In the case that an encoder is slow and inefficient, provided it can deliver the desirable quality, one can always reach the quality target if sufficient computing power is available. But, in the real world, there are constraints that cannot be ignored- whether budget, power, or space in the rack, few services have the luxury of operating as if they have unlimited computing resources. Which is why CPU performance is as critical an evaluation vector as absolute quality.

With Beamr 5 you will experience the following operational benefits as a result of the encoding operation being up to two times faster than x265 (based on the settings applied).

  • Up to half the server resources compared with x265
  • 50% of the power utility draw compared with x265
  • 50% less cooling and connectivity cost
  • Half the rack space

Evaluating Software Video Encoders

First, let’s examine the correlation between speed and quality by taking a look at the world’s best HEVC software video encoder, Beamr 5, as compared to the free open source alternative, x265.

The complexity of video encoder evaluations is such that you must understand not only what video files were used for the input, but also the precise settings (configuration) used. For this speed and quality evaluation you will note that x265 offers ten (10) performance presets that do a reasonable job of balancing the encoder’s speed and efficiency. Beamr 5 has a similar parameter named ‘enc_speed’ where there are a total of sixteen (16) levels available.

Out of the box Beamr 5 offers more granularity in its speed selection than x265, allowing for easier and more precise tuning across a wider range of computing platforms and architectures. However, to ensure an “apples to apples” comparison, other than matching the speed preset of each encoder, all other default parameters were left unchanged.

We want you to experience Beamr 5’s speed and quality first hand which is why we’ve provided the x265 settings that were used for each test. Readers are encouraged to duplicate the same tests, and we have provided download links for all files so that you can run your own independent analysis. Don’t believe our results? You can check them yourself.

As a commercial vendor working with the largest OTT and broadcast customers in the world, we design our products to be maximally usable by any video encoding engineer operating a video service. For the analysis we used x265 ‘veryslow’, ‘medium’, and ‘ultrafast’ settings since this test was designed to mirror real world use cases and not theoretical targets of either extreme speed or quality. 

At Beamr we are all about the numbers, but as all video encoding engineers say, the eyes never lie. After you review the data in the charts below, please download the corresponding files so you can see for yourself Beamr 5’s superior quality.

We start with comparing the highest video quality modes of both encoders, akin to what an SVOD service may use, and move to slightly reduced video quality, but with faster performance needed for real-time (live) applications. Here we can demonstrate that Beamr 5 ‘enc_speed 0’ is much faster than the ‘veryslow’ x265 preset, while at the same time Beamr 5 produces better overall video quality.

The original source files can be downloaded from https://media.xiph.org/video/derf/, and converted from .y4m to yuv using the following FFmpeg command:

$./ffmpeg.exe -i Netflix_BarScene_4096x2160_60fps_10bit_420.y4m -f rawvideo -pix_fmt yuv420p Netflix_BarScene_4096x2160_60fps_8bit_420.yuv

All Beamr 5 and x265 encoded files may be download from the links in the following tables or by click here. (all files were encoded in 4K resolution)

To aid in your subjective visual evaluation we suggest that you use a video comparison tool that is capable of rendering two videos in sync on the same screen. If you do not have a copy of Beamr View (formerly VCT), you may request a copy here. Beamr provides a limited license to our PC and Mac HEVC and H.264 software viewing tool FREE of charge to qualified video distribution services, content owners, and video platforms.

Test machine spec used for all clips: Amazon EC2 c3.4xlarge instance, Intel Xeon E5-2680 v2 @ 2.8GHz (16 threads), 30GB RAM, 160GB SSD.

Encoder versions: x265 version 2.5 release candidate 7/13/2017, Beamr 5 version 4.0

Highest Quality VOD Settings Comparison

The following chart provides a comparison of CPU performance at the maximum encoding quality with x265 configured at the ‘veryslow’ setting and Beamr 5 working at speed 0. The following chart shows the ability of Beamr 5 to produce higher video quality with much greater speed than x265. All other configuration settings were unchanged, except those required to align both codecs in keyframe interval, rate control limitations, and appropriate multithreading settings.

Table 1: Highest quality (VOD) configuration.

These are the settings used to test the highest quality presets (Beamr 5 enc_speed 0, x265 preset ‘veryslow’)

 

 

Command line example for x265 Highest Quality VOD setting:

$./x265 – –input BarScene.yuv – –input-res 4096×2160 – –frames 1200 – –fps 60 – –preset veryslow – –keyint 90 – –pools 16 – –bitrate 7000 – –vbv-maxrate 14000 – –vbv-bufsize 112000 – –hrd –o x.265

 

 

 

 

Table 2: Comparing highest quality (VOD) settings – Beamr 5 vs. x265.

 

 

 

 

 

 

 

 

 

 

Screen capture 1: Highest quality (VOD) settings Beamr 5 vs. x265.

4K resolution video ‘Aerial’ frame 228, left side is Beamr 5, right side is x265. Beamr 5 is 83% faster than x265 with slightly better quality.

click to enlarge photo to actual size | click to access video files

 

Screen capture 2: Highest quality (VOD) settings Beamr 5 vs. x265.

4K resolution video ‘Ritual Dance’ frame 166, left side is Beamr 5, right side is x265. Beamr 5 is 71% faster than x265 with noticeably better quality.

click to enlarge photo to actual size | click to access video files

 

Screen capture 3: Highest quality (VOD) settings Beamr 5 vs. x265.

4K resolution video ‘Driving POV’ frame 234, left side is Beamr 5, right side is x265. Beamr 5 is almost twice as fast as x265 at 98% with demonstrably better video quality.

click to enlarge photo to actual size | click to access video files

 

Comparing High Quality Settings

With x265 set to the ‘medium’ preset and Beamr 5 ‘enc_speed’ set to 3, we observed that Beamr 5 maintained a 15% to 50% speed advantage over x265 while Beamr 5 consistently produced better quality. As with all other tests, configuration settings were unchanged, except those required to align both codecs in keyframe interval, rate control limitations, and appropriate multithreading settings.

Table 3: High quality preset configuration.

 

 

Command line example for x265 High Quality setting:

$./x265 – –input BarScene.yuv – –input-res 4096×2160 – –frames 1200 – –fps 60 – –preset medium – –keyint 90 – –pools 16 – –bitrate 7000 – –vbv-maxrate 14000 – –vbv-bufsize 112000 –hrd –o x.265

 

 

 

 

 

Table 4: High quality preset performance Beamr 5 vs. x265.

 

 

 

 

 

 

 

 

 

 

Screen capture 4: High quality settings Beamr 5 vs. x265.

4K resolution video ‘Wind and Nature’ frame 518, left side is Beamr 5, right side is x265. Beamr 5 is 50% faster with a slight edge on video quality over x265.

click to enlarge photo to actual size | click to access video files

 

Screen capture 5: High quality settings Beamr 5 vs. x265.

4K resolution video ‘Ritual Dance’ frame 565, left side is Beamr 5, right side is x265. Beamr 5 is 50% faster than x265 and Beamr 5 has a definite edge on video quality.

click to enlarge photo to actual size | click to access video files

 

Screen capture 6: High quality settings Beamr 5 vs. x265.

4K resolution video ‘Pier Seaside’ frame 18, left side is Beamr 5, right side is x265. Beamr 5 is 43% faster than x265 and Beamr 5 has noticeably better video quality.

click to enlarge photo to actual size | click to access video files

 

Comparing Live Settings

Let’s examine how x265 and Beamr 5 fair when used for live encoding of 4K resolution video. When we set Beamr 5 to an equal speed configuration of x265 ‘ultrafast’, Beamr 5 was found to be faster while producing the same or better video quality.

Table 5: Live preset configuration.

 

 

Command line example for x265 live (real-time) configuration:

$./x265 – –input BarScene.yuv – –input-res 4096×2160 – –frames 1200 –fps 60 – –preset ultrafast – –keyint 90 – –pools 16 – –bitrate 7000 – –vbv-maxrate 14000 – –vbv-bufsize 112000 –hrd –o x.265

 

 

 

 

 

Table 6: Live configuration performance of Beamr 5 vs. x265.

 

 

 

 

 

 

 

 

 

 

Screen capture 7: Live settings Beamr 5 vs. x265.

4K resolution video ‘Bar Scene’ frame 595, left side is Beamr 5, right side is x265. Beamr 5 is 15% faster and produced better video quality than x265.

click to enlarge photo to actual size | click to access video files

 

Screen capture 8: Live settings Beamr 5 vs. x265.

4K resolution video ‘Dinner Scene’ frame 528, left side is Beamr 5, right side is x265. Beamr 5 is 15% faster than x265, while both exhibited comparable quality.

click to enlarge photo to actual size | click to access video files

 

Screen capture 9: Live settings Beamr 5 vs. x265.

4K resolution video ‘Tango’ frame 274, left side is Beamr 5, right side is x265. Beamr 5 is 11% faster with comparable quality, than x265.

click to enlarge photo to actual size | click to access video files

 

Summary Beamr 5 Technical Advantages

  • Beamr has 30 granted and 23 pending patents, including a fast motion estimation process which is useful when speed and quality are at competing priority. Beamr 5’s fast motion estimation process is a significant factor in our performance advantage.

 

  • Beamr 5 uses a heuristic early-termination process which enables it to reach a targeted quality using less computational resources.

 

  • Beamr 5 allows for more possible frame hierarchies (levels) than what is provided by the H.265 standard. When encoding hierarchical B-frames, x265 uses a 2-level B-frame hierarchy. Beamr 5 on the other hand, encodes with a 3-level B-frame hierarchy when encoding seven B frames between P-frames.

 

  • x265 begins encoding frames before all reference frames are finished, which limits motion estimation to only the parts of reference frames that are available. When high performance (speed) is needed, x265 encoding quality can be degraded. This provides a serious advantage to Beamr 5 which supports full codec multithreading while x265 uses slices and tiles for parallelism (when WPP is disabled for maximum efficiency).

 

  • Beamr 5 achieves better parallelism without the limitations noted above because it is based on utilizing all possible independent encoding tasks inside a single frame. This is called wave-front and it is active even when entropy wave-front is not used. Multithreading in de-blocking and SAO filtering provides additional quality benefits.

 

Evaluating an encoder is one of the most important jobs for a video encoding engineer and we are proud of the advanced HEVC codec implementation we’ve developed. All information presented may be tested and verified and we invite you to take advantage of the video files using Beamr View to subjectively analyze the results above.

For those interested in Intel specific support, you will want to stay tuned for important speed breakthroughs that we will be showing soon. Get a preview of what was announced at IBC 2017 – Beamr 5 running on the new Intel Xeon Scalable Platinum Processor. Six live 4Kp60 10-bit HDR streams on a dual socket 8180 board.

For more information simply send an email to info@beamr.com and a member of our technical sales team will reach out.

 

If you would like to learn more about Beamr 5 performance on the Intel Scalable Platinum processor family, check out our benchmark test. CLICK HERE

 

2016 Paves the Way for a Next-Gen Video Encoding Technology Explosion in 2017

2016 has been a significant year for video compression as 4K, HDR, VR and 360 video picked up steam, paving the road for an EXPLOSION of HEVC adoption in 2017. With HEVC’s ability to reduce bitrate and file sizes up to 50% over H.264, it is no surprise that HEVC has transitioned to be the essential enabler of high-quality and reliable streaming video powering all the new and exciting entertainment experiences being launched.

Couple this with the latest announcement from HEVC Advance removing royalty uncertainties that plagued the market in 2016 and we have a perfect marriage of technology and capability with HEVC.

In this post we’ll discuss 2016 from the lenses of Beamr’s own product and company news, combined with notable trends that will shape 2017 in the advanced video encoding space.  

>> The Market Speaks: Setting the Groundwork for an Explosion of HEVC

The State of 4K

With 4K content creation growing and the average selling price of UHD 4K TVs dropping (and being adopted faster than HDTVs), 4K is here and the critical mass of demand will follow closely. We recently did a little investigative research on the state of 4K and four of the most significant trends pushing its adoption by consumers:

  • The upgrade in picture quality is significant and will drive an increase in value to the consumer – and, most importantly, additional revenue opportunities for services as consumers are preconditioned to pay more for a premium experience. It only takes a few minutes viewing time to see that 4K offers premium video quality and enhances the entertainment experience.
  • Competitive forces are operating at scale – Service Providers and OTT distributors will drive the adoption of 4K. MSO are upping their game and in 2017 you will see several deliver highly formidable services to take on pure play OTT distributors. Who’s going to win, who’s going to lose? We think it’s going to be a win-win as services are able to increase ARPUs and reduce churn, while consumers will be able to actually experience the full quality and resolution that their new TV can deliver.
  • Commercially available 4K UHD services will be scaling rapidly –  SNL Kagan forecasts the number of global UHD Linear channels at 237 globally by 2020, which is great news for consumers. The UltraHD Forum recently published a list of UHD services that are “live” today numbering 18 VOD and 37 Live services with 8 in the US and 47 outside the US. Clearly, content will not be the weak link in UHD 4K market acceptance for much longer.
  • Geographic deployments — 4K is more widely deployed in Asia Pacific and Western Europe than in the U.S. today. But we see this as a massive opportunity since many people are traveling abroad and thus will be exposed to the incredible quality. They will then return home to question their service provider, why they had to travel outside the country to see 4K. Which means as soon as the planned services in the U.S. are launched, they will likely attract customer more quickly than we’ve seen in the past.

HDR adds WOW factor to 4K

High Dynamic Range (HDR) improves video quality by going beyond more pixels to increase the amount of data delivered by each pixel. HDR video is capable of capturing a larger range of brightness and luminosity to produce an image closer to what can be seen in real life. Show anyone HDR content encoded in 4K resolution, and it’s no surprise that content providers and TV manufacturers are quickly jumping on board to deliver content with HDR. Yes, it’s “that good.” There is no disputing that HDR delivers the “wow” factor that the market and consumers are looking for. But what’s even more promising is the industry’s overwhelmingly positive reaction to it. Read more here.

Beamr has been working with Dolby to enable Dolby Vision HDR support for several years now, even jointly presenting a white paper at SMPTE in 2014. The V.265 codec is optimized for Dolby Vision and HDR10 and takes into account all requirements for both standards including full support for VUI signaling, SEI messaging, SMPTE ST 2084:2014 and ITU-R BT.2020. For more information visit http://beamr.com/vanguard-by-beamr-content-adaptive-hevc-codec-sdk

Beamr is honored to have customers who are best in class and span OTT delivery, Broadcast, Service Providers and other entertainment video applications. From what we see and hear, studios are uber excited about HDR, cable companies are prepping for HDR delivery, Satellite distributors are building the capability to distribute HDR, and of course OTT services like Netflix, FandangoNow (formerly M-GO), VUDU, and Amazon are already distributing content using either Dolby Vision or HDR10 (or both). If your current video encoding workflow cannot fully support or adequately encode content with HDR, it’s time to update. Our V.265 video encoder SDK is a perfect place to start.

VR & 360 Video at Streamable Bitrates

360-degree video made a lot of noise in 2016.  YouTube, Facebook and Twitter added support for 360-degree videos, including live streaming in 360 degrees, to their platforms. 360-degree video content and computer-generated VR content is being delivered to web browsers, mobile devices, and a range of Virtual Reality headsets.  The Oculus Rift, HTC Vive, Gear VR and Daydream View have all shipped this year, creating a new market for immersive content experiences.

But, there is an inherent problem with delivering VR and 360 video on today’s platforms.  In order to enable HD video viewing in your “viewport” (the part of the 360-degree space that you actually look at), the resolution of the full 360 video delivered to you should be 4K or more.  On the other hand, the devices on the market today which are used to view this content, including desktops, mobile devices and VR headsets only support H.264 video decoding. So delivering the high-resolution video content requires very high bitrates – twice as much as using the more modern HEVC standard.

The current solution to this issue is lowered video quality in order to fit the H.264 video stream into a reasonable bandwidth. This creates an experience for users which is not the best possible, a factor that can discourage them from consuming this newly-available VR and 360 video content.  But there’s one thing we know for sure – next generation compression including HEVC and content adaptive encoding – and perceptual optimization – will be a critical part of the final solution. Read more about VR and 360 here.

Patent Pool HEVC Advance Announces “Royalty Free” HEVC software

As 4K, HDR, VR and 360 video gathers steam, Beamr has seen the adoption rate moving faster than expected, but with the unanswered questions around royalties, and concerns of who would shoulder the cost burden, distributors have been tentative. The latest move by HEVC Advance to offer a royalty free option is meant to encourage and accelerate the adoption (implementation) of HEVC, by removing royalty uncertainties.

Internet streaming distributors and software application providers can be at ease knowing they can offer applications with HEVC software decoders without incurring onerous royalties or licensing fees. This is important as streaming app content consumption continues to increase, with more and more companies investing in its future.

By initiating a software-only royalty solution, HEVC Advance expects this move to push the rest of the market i.e. device manufacturers and browser providers to implement HEVC capability in their hardware and offer their customers the best and most efficient video experience possible.

 

>> 2017 Predictions

Mobile Video Services will Drive the Need for Content-adaptive Optimization

Given the trend toward better quality and higher resolution (4K), it’s more important than ever for video content distributors to pursue more efficient methods of encoding their video so they can adapt to the rapidly changing market, and this is where content-adaptive optimization provides a massive benefit.

The boundaries between OTT services and traditional MSO (cable and satellite) are being blurred now that all major MSOs include TVE (TV Everywhere streaming services with both VOD and Linear channels) in their subscription packages (some even break these services out separately as is the case with SlingTV). And in October, AT&T CEO Randall Stephenson vowed that DirecTV Now would disrupt the pay-TV business with revolutionary pricing for an  Internet-streaming service at a mere $35 per month for a package with more than 100 channels.

And get this – AT&T wireless is adopting the practice of “zero rating” for their customers, that is, they will not count the OTT service streaming video usage toward the subscriber’s monthly data plan. This represents a great value for customers, but there is no doubt that it puts pricing pressure on the operational side of all zero rated services.

2017 is the year that consumers will finally be able to enjoy linear as well as VOD content anywhere they wish even outside the home.

Beamr’s Contribution to MSOs, Service Providers, and OTT Distributors is More Critical Than Ever

When reaching to consumers across multiple platforms, with different constraints and delivery cost models, Beamr’s content adaptive optimizer perfects the encoding process to the most efficient quality and bitrate combination.

Whether you pay by the bit delivered to a traditional CDN provider, or operate your own infrastructure, the benefits of delivering less traffic are realized with improved UX such as faster stream start times and reduced re-buffering events, in addition to the cost savings. One popular streaming service reported to us that after implementing our content-adaptive optimization solution their rebuffering events as measured on the player were reduced by up to 50%, while their stream start times improved 20%.

Recently popularized by Netflix and Google, content-adaptive encoding is the idea that not all videos are created equal in terms of their encoding requirements. Content-adaptive optimization complements the encoding process by driving the encoder to the lowest bitrate possible based on the needs of the content, and not a fixed target bitrate (as seen in traditional encoding processes and products).

A content-adaptive solution can optimize more efficiently by analyzing already-encoded video on a frame-by-frame and scene-by-scene level, detecting areas of the video that can be further compressed without losing perceptual quality (e.g. slow motion scenes, smooth surfaces).

Provided the perceptual quality calculation is performed at the frame level with an optimizer that contains a closed loop perceptual quality measure, the output can be guaranteed to be the highest quality at the lowest bitrate possible. Click the following link to learn how Beamr’s patented content adaptive optimization technology achieves exactly this result.

Encoding and Optimization Working Together to Build the Future

Since the content-adaptive optimization process is applied to files that have already been encoded, by combining an industry leading H.264 and HEVC encoder with the best optimization solution (Beamr Video), the market will be sure to benefit by receiving the highest quality video at the lowest possible bitrate and file size. As a result, this will allow content providers to improve the end-user experience with high quality video, while meeting the growing network constraints due to increased mobile consumption and general Internet congestion.

Beamr made a bold step towards delivering on this stated market requirement by disrupting the video encoding space when in April 2016 we acquired Vanguard Video – a premier video encoding and technology company. This move will benefit the industry starting in 2017 when we introduce a new class of video encoder that we call a Content Adaptive Encoder.

As content adaptive encoding techniques are being adopted by major streaming services and video platforms like YouTube and Netflix, the market is gearing up for more advanced rate control and optimization methods, something that fits our perceptual quality measure technology perfectly. This fact when combined with Beamr having the best in class HEVC software encoder in the industry, will yield exciting benefits for the market. Read the Beamr Encoder Superguide that details the most popular methods for performing content adaptive encoding and how you can integrate them into your video workflow.

One Year from Now…

In one year from now when you read our post summarizing 2017 and heralding 2018, what you will likely hear is that 2017 was the year that advanced codecs like HEVC combined with efficient perceptually based quality measures, such as Beamr’s, provide an additional 20% or greater bitrate reduction.

The ripple effect of this technology leap will be that services struggling to compete today on quality or bitrate, may fall so far behind that they lose their ability to grow the market. We know of many multi-service operator platforms who are gearing up to increase the quality of their video beyond the current best of class for OTT services. That is correct, they’ve watched the consumer response to new entrants in the market offering superior video quality, and they are not sitting still. In fact, many are planning to leapfrog the competition with their aggressive adoption of content adaptive perceptual quality driven solutions.  

If any one service assumes they have the leadership position based on bitrate or quality, 2017 may prove to be a reshuffling of the deck.

For Beamr, the industry can expect to see an expansion of our software encoder line with the integration of our perceptual quality measure which has been developed over the last 7 years, and is covered by more than 50 patents granted and pending. We are proud of the fact that this solution has been shipping for more than 3 years in our stand-alone video and photo optimizer solutions.

It’s going to be an exciting year for Beamr and the industry and we welcome you to join us. If you are intrigued and would like to learn more about our products or are interested in evaluating any of our solutions, check us out at beamr.com.

Shows Without Safety Nets: The Lasting Appeal of Live TV

Live video streaming is certainly popular these days, but it’s not a new concept. Instead, it hearkens back to a beloved form of 20th-century entertainment: live scripted television. In fact, this type of non-news, non-sports programming endures to this day.

Live TV Enthralls a Nation

During the 1950s, comedies and dramas on TV were often live. Variety programs like “Your Show of Shows” were full of energetic comedy sketches. Anthology shows were popular as well. “Playhouse 90,” for one, staged different dramatic productions each week. When you tuned in, it was like watching a 90-minute play. For example, “Days of Wine and Roses,” which concerns a couple battling alcoholism, was a gripping 1958 TV movie before it became an acclaimed 1962 film.

However, in 1951, CBS decided to film “I Love Lucy” in front of a studio audience. By the 1960s, live primetime TV had become scarce partly due to this show’s success.

Live Sitcoms? Not.

Let’s give credit to “Roc,” a Fox sitcom about a sanitation worker. The show averaged around 9 million viewers during its first season (1991-92). But when it aired a live show in February 1992, the episode attracted approximately 11 million. The producers then decided to do the whole second season live. It didn’t go as well the second time around.

In March 2015, NBC’s “Undateable” revived this approach. The comedy, which revolves around some slovenly singles, televised a season of live episodes. Unfortunately, like “Roc,” it’s far from a hit.

Live Episodes and Musicals

In 1997, the season premiere of the NBC medical drama “ER,” entitled “Ambush,” was broadcast live. Cast member George Clooney, a fan of 1950s TV, had urged the producers to approve a live episode. The actors had to perform it twice, the second time for the West Coast. With 42.7 million viewers, it was a massive ratings success. And it prompted several other shows to telecast their own live episodes, including NBC’s “30 Rock” and “The West Wing.”

Additionally, in recent years, television has been lighting up social media with live versions of musicals. This trend started with 2013’s “The Sound of Music Live!” on NBC, which starred country singer Carrie Underwood. Filmed at New York’s Grumman Studios, it was the first live Broadway musical on TV in more than 50 years. Nearly 38.7 million viewers caught at least some of this three-hour show, and it averaged about 18.6 million viewers at any one moment.

Video Streaming: Live TV for the 21st Century?

Live TV has lasted because it gives people the feeling that they’re having a unique experience. After all, no one knows what might happen during such a performance. Actors could forget their lines, or an earthquake could hit the studio.

Live video streaming offers that same anything-can-happen thrill. Plus, marketing professionals value it as it lets them interact with consumers and get a sense of their opinions.

Best of all, these videos draw people closer. Friends and family members can sit with laptops, tablets and smartphones and watch them at the same time. Whether they’re in the same room or viewing remotely, a special camaraderie arises. It’s the emotional connection that forms when you know that others are feeling what you’re feeling. Yes, there’s real joy in laughing, crying and gasping as a group.

Moreover, whenever you’re watching a video of a one-time-only event ― for instance, a Periscope video of a birth or graduation ― the shared viewing becomes even more powerful.

It’s the kind of togetherness that many people must’ve known as they gathered in living rooms to watch “Your Show of Shows” and “Playhouse 90” way back when.

Which has us thinking, will services like Facebook live become the new reality TV format? With Facebook now serving 8 billion views a day, a 100% increase over just 6 months earlier according to this TechCrunch article. There is no doubt that the shared, social experience of live video is here to stay.

But what this means technically is what motivates Beamr’s team of 60 video codec engineers and image scientists to not stop innovating. As consumer expectations are increasing for better video quality and improved streaming stability, never before has the need for high quality video encoding that makes the best use of as few bits as possible, been needed.