Connecting Virtual Reality with the History of Encoding Technology

Two fun and surprising brain factoids are revealed that connect virtual reality with the history of encoding technology.

Bloomberg featured a Charlie Rose interview with Jeremy Bailenson, the founding director of Stanford University’s Virtual Human Interaction Lab. Not surprisingly, the lab houses the sharpest minds and insightful datasets in its discipline of focus: Virtual Reality.

It’s a 20-minute video that touches on some fascinating elements of VR – very few of which are about commercial television or sports entertainment experiences.

In fact, it is as much an interview about the brain, human interaction, and the physical body, as it is about media and entertainment.

As Jeremy says: “The medium [of VR] puts you inside of the media. It feels like you are actually doing something.”

Then, he states our first stunning fact about the brain, which illustrates why VR will be so impactful on modern civilization:

We can’t tell the difference!

Professor Bailenson: “The brain is going to treat that as if it is a real experience. Humans have been around for a very long time [evolving in the real world.] The brain hasn’t yet evolved to really understand the difference between a compelling virtual reality experience and a real one.”

The full video is here.

So there you have it. Our brains are nothing short of miraculous, but they’ve evolved some peculiar wiring to say the least. To put it bluntly, while humans are exceptionally clever in many ways, we’re not so much in others.

Which is the perfect segue into my second surprising factoid about the brain, and it’s taken 25 years for commercial video markets to exploit this fact!

To be fair, that’s not an exact statement, but here’s the timeline for reference.

According to Wikipedia, Cinepak was one of the very first commercial implementations of video compression technology. It made it possible to watch video utilizing CD-ROM. (Just typing the words taps into nostalgia.) Cinepak was released in 1991 and became part of Apple’s QuickTime toolset a year later.

It was 16 years later, in 2007, that the Video Quality Experts Group decided to create and benchmark a new metric that – while not perfect – served as a milestone amongst the video coding community. For the first time, there was a recognition that maximum compression required us to take human vision biology into account when designing algorithms to shrink video files. Their perceptual metric was known as Perceptual Evaluation of Video Quality, and despite its impracticality for implementation, it became a part of the International Telecommunications Union standards.

Then in 2009, Beamr was formed to solve the very real need to reduce file sizes while retaining quality. This need became evident after an encounter with a consumer technology products company who indicated the massive cost of storage for digital media was an inhibitor for them to offer services that could extend the capacity of their devices. So we set out to solve the technical challenge of reducing redundant bits without compromising quality, and to do this in a fully automatic manner. The result? 50 patents have now been granted or are pending. And we have commercial implementations of our solution that have been working in some of the largest new media and video distribution platforms for more than three years.

But beyond this, there is another subjective datapoint taken from Beamr’s experience over the last few quarters where many of the conversations and evaluations that we are entering into about next-generation encoding are not limited to advanced codecs but rather subjective quality metrics – and leveraging our knowledge of the human vision system to remove bits in a compressed video file with no human noticeable difference.

As VR, 360, UHD, HDR and other exciting new consumer entertainment technologies are beginning to take hold in the market, never before has there been a greater need to advance the state of the art in the area of maximizing quality at a given bitrate. Beamr was the first company to step up to address and solve this challenge, and with our demonstrable quality, it’s not a stretch to suggest that we have the lead.

More information on Beamr’s software encoding and optimization solutions can be found at beamr.com

Immersive VR and 360 video at streamable bitrates: Are you crazy?

There have been many high-profile experiments with VR and 360 video in the past year. Immersive video is compelling, but large and unwieldy to deliver. This area will require huge advancements in video processing – including shortcuts and tricks that border on ‘magical’.

Most of us have experienced breathtaking demonstrations that provide a window into the powerful capacity of VR and 360 video – and into the future of premium immersive video experiences.

However, if you search the web for an understanding of how much bandwidth is required to create these video environments, you’re likely to get lost in a tangled thicket of theories and calculations.

Can the industry support the bitrates these formats require?

One such post on Forbes in February 2016 says No.

It provides a detailed mathematical account of why fully immersive VR will require each eye to receive 720 million pixels at 36 bits per pixel and 60 frames per second – or a total of 3.1 trillion bits per second.1

We’ve taken a poll at Beamr, and no one in the office has access to those kinds of download speeds. And some of these folks pay the equivalent of a part-time salary to their ISP!

Thankfully the Forbes article goes on to explain that it’s not quite that bad.

Existing video compression standards will be able to improve this number by 300, according to the author, and HEVC will compress that by 600 down to what might be 5.2 Gbps.

The truth is, the calculations put forth in the Forbes piece are very ambitious indeed. As the author states:

“The ultimate display would need a region of 720 million pixels for full coverage because even though your foveal vision has a more narrow field of view, your eyes can saccade across that full space within an instant. Now add head and body rotation for 360 horizontal and 180 vertical degrees for a total of more than 2.5 billion (giga) pixels.”

A more realistic view of the way VR will rollout was presented by Charles Cheevers of network equipment vendor ARRIS at INTX in May of this year.2

Great VR experiences including a full 360 degree stereoscopic video environment at 4K resolutions could easily require a streaming bandwidth of 500 Mbps or more.

That’s still way too high, so what’s a VR producer to do?

Magical illusion, of course. 

In fact, just like your average Vegas magician, the current state of the art in VR delivery relies on tricks and shortcuts that leverage the imperfect way we humans see.

For example, Foveated Rendering can be used to aggressively compress the areas of a VR video where your eyes are not focused.

This technique alone, and variations on this theme – can take the bandwidth required by companies like NextVR dramatically lower, with some reports that an 8 Mbps stream can provide a compelling immersive experience. The fact is, there are endless ways to configure the end-to-end workflow for VR and much will depend on the hardware and software and networking environments in which it is deployed.

Compression innovations utilizing perceptual frame by frame rate control methodologies, and some involving the mapping of spherical images to cubes and pyramids, in an attempt to transpose images into 5 or 6 viewing planes, and ensure the highest resolution is always on the plane where the eyes are most intensely focused, are being tried.3

At the end of the day, it’s going to be hard to pin down your nearest VR dealer on the amount of bandwidth that’s required for a compelling VR experience. But there’s one thing we know for sure – next generation compression including HEVC and content adaptive encoding – and perceptual optimization – will be a critical part of the final solution.

References:

(1) Found on August 10, 2016 at the following URL: http://www.forbes.com/sites/valleyvoices/2016/02/09/why-the-internet-pipes-will-burst-if-virtual-reality-takes-off/#ca7563d64e8c

(2) Start at 56 minutes. https://www.intxshow.com/session/1041/  — Information and a chart is also available online here: http://www.onlinereporter.com/2016/06/17/arris-gives-us-hint-bandwidth-requirements-vr/ 

(3) Facebook’s developer site gives a fascinating look at these approaches, which they call dynamic streaming techniques. Found on August 10, 2016 at the following URL:  https://code.facebook.com/posts/1126354007399553/next-generation-video-encoding-techniques-for-360-video-and-vr/

Will Virtual Reality Determine the Future of Streaming?

As video services take a more aggressive approach to virtual reality (VR), the question of how to scale and deliver this bandwidth intensive content must be addressed to bring it to a mainstream audience.

While we’ve been talking about VR for a long time you can say that it was reinvigorated when Oculus grabbed the attention of Facebook who injected 2 billion in investment based on Mark Zuckerberg’s vision that VR is a future technology that people will actively embrace. Industry forecasters tend to agree, suggesting VR will be front and center in the digital economy within the next decade. According to research by Canalys, vendors will ship 6.3 million VR headsets globally in 2016 and CCS Insights suggest that as many as 96 million headsets will get snapped up by consumers by 2020.

One of VR’s key advantages is the fact that you have the freedom to look anywhere in 360 degrees using a fully panoramic video in a highly intimate setting. Panoramic video files and resolution dimensions are large, often 4K (4096 pixels wide, 2048 pixels tall, depending on the standard) or bigger.

While VR is considered to be the next big revolution in the consumption of media content, we also see it popping up in professional fields such as education, health, law enforcement, defense telecom and media. It can provide a far more immersive live experience than TV, by adding presence, the feeling that “you are really there.”

Development of VR projects have already started to take off and high-quality VR devices are surprisingly affordable. Earlier this summer, Google announced that 360-degree live streaming support was coming to YouTube.

Of course, all these new angles and sharpness of imagery creates new and challenging sets of engineering hurdles which we’ll discuss below.

Resolution and, Quality?

Frame rate, resolution, and bandwidth are affected by the sheer volume of pixels that VR transmits. Developers and distributors of VR content will need to maximize frame rates and resolution throughout the entire workflow. They must keep up with the wide range of viewers’ devices as sporting events in particular, demand precise detail and high frame rates, such as what we see with instant replay, slow motion, and 360-degree cameras.

In a recent Vicon industry survey, 28 percent of respondents stated that high-quality content was important to ensuring a good VR experience. Let’s think about simple file size comparisons – we already know that ultra HD file sizes take up considerably more storage space than SD and the greater the file size, the greater a chance it will impede the delivery. VR file sizes are no small potatoes.  When you’re talking about VR video you’re talking about four to six times the foundational resolution that you are transmitting. And, if you thought that Ultra HD was cumbersome, think about how you’re going to deal with resolutions beyond 4K for an immersive VR HD experience.

In order to catch up with the file sizes we need to continue to develop video codecs that can quickly interpret the frame-by-frame data. HEVC is a great starting point but frankly given hardware device limitations many content distributors are forced to continue using H.264 codecs. For this reason we must harness advanced tools in image processing and compression. An example of one approach would be content adaptive perceptual optimization.

I want my VR now! Reaching End Users

Because video content comes in a variety of file formats including combinations of stereoscopic 3D, 360 degree panoramas and spherical views – they all come with obvious challenges such as added strain on processors, memory, and network bandwidth. Modern codecs today use a variety of algorithms to quickly and efficiently detect these similarities, but they are usually tailored to 2D content. However, a content delivery mechanism must be able to send this to every user and should be smart to optimize the processing and transmitting of video.

Minimizing latency, how long can you roll the boulder up the hill?

We’ve seen significant improvements in the graphic processing capabilities of desktops and laptops. However, to take advantage of the immersive environment that VR offers, it’s important that high-end graphics are delivered to the viewer as quickly and smoothly as possible. The VR hardware also needs to display large images properly and with the highest fidelity and lowest latency. There really is very limited room for things like color correction or for adjusting panning from different directions for instance. If you have to stitch or rework artifacts, you will likely lose ground. You need to be smart about it. Typical decoders for tablets or smart TVs are more likely to cause latency and they only support lower framerates. This means how you build the infrastructure will be the key to offering image quality and life-like resolution that consumers expect to see.

Bandwidth, where art thou?

According to Netflix, for an Ultra HD streaming experience, your Internet connection must have a speed of 25 Mbps or higher. However, according to Akamai, the average Internet speed in the US is only approximately 11 Mbps. Effectively, this prohibits live streaming on any typical mobile VR device which to achieve the quality and resolution needed may need 25 Mbps minimum.

Most certainly the improvements in graphic processing and hardware will continue to drive forward the realism of the immersive VR content, as the ability to render an image quickly becomes easier and cheaper. Just recently, Netflix jumped on the bandwagon and became the first of many streaming media apps to launch on Oculus’ virtual reality app store. As soon as all the VR display devices are able to integrate with these higher resolution screens, we will see another step change in the quality and realism of virtual environments. But will the available bandwidth be sufficient, is a very real question. 

To understand the applications for VR, you really have to see it to believe it

A heart-warming campaign from Expedia recently offered children at a research hospital in Memphis Tennessee the opportunity to be taken on a journey of their dreams through immersive, real-time virtual travel – all without getting on a plane:  https://www.youtube.com/watch?time_continue=179&v=2wQQh5tbSPw

The National Multiple Sclerosis Society also launched a VR campaign that inventively used the tech to give two people with MS the opportunity to experience their lifelong passions. These are the type of immersive experiences we hope will unlock a better future for mankind. We applaud the massive projects and time spent on developing meaningful VR content and programming such as this.

Frost & Sullivan estimates that $1.5 billion is the forecasted revenue from Pay TV operators delivering VR content by 2020. The adoption of VR in my estimation is only limited by the quality of the user experience, as consumer expectation will no doubt be high.

For VR to really take off, the industry needs to address some of these challenges making VR more accessible and most importantly with unique and meaningful content. But it’s hard to talk about VR without experiencing it. I suggest you try it – you will like it.